Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Consensus Target Tracking in Multi-robot Systems

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6424))

Included in the following conference series:

  • 3453 Accesses

Abstract

By sharing collective sensor information, individuals in biological flocking systems have more opportunities for finding food and avoiding predators. This paper introduces a distributed robot flocking system with similar behaviour to biological flocking systems. In the developed flocking system, robots cooperatively track a target by using consensus algorithm. The consensus algorithm enables the robots to estimate locally the position of a target. The performance of the flocking system is tested via simulations. The results demonstrate that the flocking system is flexible, reliable and feasible for practical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioural model. Computer Graphics 21(3), 25–34 (1987)

    Article  Google Scholar 

  2. Egerstedt, M., Hu, X., Stotsky, A.: Control of mobile platforms using a virtual vehicle approach. IEEE Trans. on Automatic Control 46, 1777–1782 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kalman, R.: A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82, 35–45 (1960)

    Article  Google Scholar 

  4. Gu, D., Wang, Z.: Distributed regression over sensor networks: a support vector machine approach. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3286–3291 (2008)

    Google Scholar 

  5. Bhansali, P., Gambini, S., Huang, P., Roychowdhury, J.: Networks of oscillators for synchronization. In: Proc. of the GSRC Annual Symposium (2008)

    Google Scholar 

  6. Carli, R., Chiuso, A., Schenato, L., Zampieri, S.: Distributed Kalman filtering using consensus strategies. In: Proc. of the 44th IEEE Conference on Decision and Control (2007)

    Google Scholar 

  7. Gupta, V., Chang, T., Hassibi, B., Murray, R.: On a stochatic sensor selection algorithm with applications in sensor scheduling and sensor coverage. Automatica 44, 1295–1303 (2008)

    Article  Google Scholar 

  8. Medeiros, H., Park, J., Kak, A.: Distributed object tracking using a cluster-based Kalman filter in wireless camera networks. IEEE Journal of Selected Topics in Signal Processing 2, 448–463 (2008)

    Article  Google Scholar 

  9. Khan, U., Moura, J.: Distributing the Kalman filter for large-scale systems. IEEE Trans. on Signal Processing, 4919–4935 (2008)

    Google Scholar 

  10. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. on Automatic Control 51(3), 401–420 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jadbabaie, A., Lin, J., Morse, S.A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. on Automatic Control 48(6), 988–1001 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gu, D., Wang, Z.: LeaderDFollower Flocking: Algorithms and Experiments. IEEE Transactions on Control Systems Technology 17, 1211–1219 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Z., Gu, D., Meng, T., Zhao, Y. (2010). Consensus Target Tracking in Multi-robot Systems. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6424. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16584-9_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16584-9_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16583-2

  • Online ISBN: 978-3-642-16584-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics