Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Supporting Smart Interactions with Predictive Analytics

  • Chapter
The Smart Internet

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6400))

Abstract

Smart interactions, where web services are configured and integrated across multiple servers in order to better address the needs of the user, will be much more user-centric and responsive to user needs than current interactions. However, Smart interactions associated with decision-making tasks will specifically have to provide enhanced information or guidance linked to that task. In this paper we examine how predictive analytics can be used to provide cognitive support for smart interactions and outline a method consistent with the smart internet user model to facilitate the creation of predictive analytics components or services to support smart interactions for decision-making tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ng, J.W., Chignell, M., Cordy, J.R.: The Smart Internet: Transforming the Web for the User. In: Martin, P., Kark, A.W., Stewart, D. (eds.) Proceedings of the 2009 Conference of the Centres for Advanced Studies on Collaborative Research, CASCON 2009, Ontario, Canada, November 02-05, pp. 285–296. ACM, New York (2009)

    Chapter  Google Scholar 

  2. Agosta, L.: The Future of Data Mining – Predictive Analytics. DM Review (2004)

    Google Scholar 

  3. Bigus, J., Chitnis, U., Deshpande, P., Kannan, R., Mohania, M., Negi, S., Deepak, P., Pednault, E., Soni, S., Telkar, B., White, B.: CRM Analytics Framework. In: Proc. of 15th Int. Conf. on Management of Data (COMAD 2009), Mysore, India (2009)

    Google Scholar 

  4. Tung, L., Xu, Y.: A framework for e-commerce oriented recommendation systems, Active Media Technology. In: Proceedings of the International Conference on AMT 2005, May 19-21, pp. 309–314 (2005)

    Google Scholar 

  5. Chuang, H., Wang, L., Pan, C.: A Study on the Comparison between Content-Based and Preference-Based Recommendation Systems, Semantics, Knowledge and Grid. In: Fourth International Conference on SKG 2008, December 3-5, pp. 477–480 (2008)

    Google Scholar 

  6. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-commerce. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, EC 2000, Minneapolis, Minnesota, United States, October 17-20, pp. 158–167. ACM, New York (2000)

    Google Scholar 

  7. Apte, C., Bibelnieks, E., Natarajan, R., Pednault, E., Tipu, F., Campbell, D., Nelson, B.: Segmentation-based modeling for advanced targeted marketing. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, pp. 408–413 (2001)

    Google Scholar 

  8. Apte, C.V., Hong, S.J., Natarajan, R., Pednault, E.P., Tipu, F.A., Weiss, S.M.: Data-intensive analytics for predictive modeling. IBM J. Res. Dev. 47(1), 17–23 (2003)

    Article  Google Scholar 

  9. Abe, N., Pednault, E., Wang, H., Zadrozny, B., Fan, W., Apte, C.: Empirical Comparison of Various Reinforcement Learning Strategies for Sequential Targeted Marketing. In: Proceedings of the 2002 IEEE international Conference on Data Mining. IEEE Computer Society, Washington (2002)

    Google Scholar 

  10. Masnadi-Shirazi, H., Vasconcelos, N.: Cost-sensitive boosting. IEEE Transactions on PP Pattern Analysis and Machine Intelligence 99, 1 (2010)

    Google Scholar 

  11. Kaelbling, L.P.: Reinforcement learning: A survey. Journal of artificial intelligence research 4, 237–285 (1996)

    Google Scholar 

  12. Sutton, R.S.: Learning to predict by the method of temporal differences. Machine Learning 3(1), 9–44 (1988)

    Google Scholar 

  13. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuron-like adaptive elements that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC 13(5), 834–846 (1983)

    Article  Google Scholar 

  14. Watkins, C.J.C.H.: Learning from Delayed Rewards. Ph.D. thesis, King’s College, Cambridge, UK (1989)

    Google Scholar 

  15. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8(3), 279–292 (1992)

    MATH  Google Scholar 

  16. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Comm. ACM 35(12), 61–70 (1992)

    Article  Google Scholar 

  17. Hong, S.J., Natarajan, R., Belitskaya, I.: A New Approach for Item Choice Recommendations. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114, pp. 131–140. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Connor, M., Herlocker, J.: Clustering items for collaborative filtering. In: Proc. of the SIGIR Workshop on Recommender Systems, Berkeley CA (1999)

    Google Scholar 

  19. Papamichail, G.P., Papamichail, D.P.: The k-means range algorithm for personalized data clustering in e-commerce. European Journal of Operational Research 177(3), 1400–1408 (2007)

    Article  MATH  Google Scholar 

  20. Huang, Y.: An item based collaborative filtering using item clustering prediction. In: ISECS International Colloquium on Computing, Communication, Control, and Management, CCCM 2009, vol. 4, pp. 54–56 (2009)

    Google Scholar 

  21. Marketing Research: A/B Split Testing (2010), http://www.marketingexperiments.com/improving-website-conversion/ab-split-testing.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martin, P., Matheson, M., Lo, J., Ng, J., Tan, D., Thomson, B. (2010). Supporting Smart Interactions with Predictive Analytics. In: Chignell, M., Cordy, J., Ng, J., Yesha, Y. (eds) The Smart Internet. Lecture Notes in Computer Science, vol 6400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16599-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16599-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16598-6

  • Online ISBN: 978-3-642-16599-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics