Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Synchronization of Duffing-Holmes Oscillators Using Stable Neural Network Controller

  • Conference paper
Computational Collective Intelligence. Technologies and Applications (ICCCI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6423))

Included in the following conference series:

Abstract

This paper presents a neural network controller for synchronization of two Duffing-Holmes oscillators. A Duffing-Holmes oscillator is a chaotic system describing a dynamics of the forced vibration of a buckled elastic beam. The controller is a feedforward neural network trained to drive the first Duffing-Holmes oscillator so that its states converge to those of the other Duffing-Holmes. The training scheme is based on a model reference strategy with imposing stability conditions on the controller’s parameters. The stability condition guarantees the convergence of the synchronization errors. Numerical simulations are conducted to illustrate the feasibility and effectiveness of the stable neural network controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ott, E.F., Grebogi, C., Yorke, J.A.: Controlling Chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Peng, C.-C., Chen, C.-L.: Robust Chaotic Control of Lorenz System by Backstepping Design. Chaos, Solitons and Fractals 37, 598–608 (2008)

    Article  MATH  Google Scholar 

  3. Nazzal, J.M., Natsheh, A.N.: Chaos Control using Sliding-mode Theory. Chaos, Solitons and Fractals 33, 695–702 (2007)

    Article  Google Scholar 

  4. Sangpet, T., Kuntanapreeda, S.: Output Feedback Control of Unified Chaotic Systems Based on Feedback Passivity. Int. Journal of Bifurcation and Chaos 20, 1519–1525 (2010)

    Article  MATH  Google Scholar 

  5. Kuntanapreeda, S.: An Observer-based Neural Network Controller for Chaotic Lorenz System. In: Kang, L., Cai, Z., Yan, X., Liu, Y. (eds.) ISICA 2008. LNCS, vol. 5370, pp. 608–617. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Meda-Campana, J.A., Castillo-Toledo, B., Chen, G.: Synchronization of Chaotic Systems from a Fuzzy Regulation Approach. Fuzzy Sets and Systems 160, 2860–2875 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kuntanapreeda, S.: Chaos synchronization of unified chaotic systems via LMI. Physics Letters A 373, 2837–2840 (2009)

    Article  MATH  Google Scholar 

  8. Sangpet, T., Kuntanapreeda, S.: Adaptive Synchronization of Hyperchaotic Systems via Passivity Feedback Control with Time-varying Gains. Journal of Sound and Vibration 329, 2490–2496 (2010)

    Article  MATH  Google Scholar 

  9. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Heidelberg (1983)

    Book  MATH  Google Scholar 

  10. White, D.A., Sofge, D.A.: Handbook of Intelligent Control: Neural, Fuzzy and Adaptive. Van Nostrand Reinhold, New York (1992)

    Google Scholar 

  11. Kuntanapreeda, S., Fullmer, R.R.: A training rule which guarantees finite-region stability for a class of closed-loop neural network control systems. IEEE Transactions on Neural Networks 7(3), 745–751 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuntanapreeda, S. (2010). Synchronization of Duffing-Holmes Oscillators Using Stable Neural Network Controller. In: Pan, JS., Chen, SM., Nguyen, N.T. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2010. Lecture Notes in Computer Science(), vol 6423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16696-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16696-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16695-2

  • Online ISBN: 978-3-642-16696-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics