Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SAR Image Denoising Using the Non-Subsampled Contourlet Transform and Morphological Operators

  • Conference paper
Advances in Artificial Intelligence (MICAI 2010)

Abstract

This paper introduces a novel algorithm that combines the Non-Subsampled Contourlet Transform (NSCT) and morphological operators to reduce the multiplicative noise of synthetic aperture radar images. The image corrupted by multiplicative noise is preprocessed and decomposed into several scales and directions using the NSCT. Then, the contours and uniform regions of each subband are separated from noise. Finally, the resulting denoised subbands are transformed back into the spatial domain and applied the exponential function to obtain the denoised image. Experimental results show that the proposed method drastically reduces the multiplicative noise and outperforms other denoising methods, while achieving a better preservation of the visual details.

This work was supported by FOMIX CHIH-2009-C01-117569.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. on IT 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Frost, V.S., Stiles, J.A., Shanmugan, K.S., Holtzman, J.C.: A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions Pattern Analysis and Machine Intelligence 4, 157–165 (1980)

    Google Scholar 

  3. Liu, C., Wang, H.: Image Denoising Based on Wavelet Edge Detection by Scale Multiplication. In: Proceedings of the 2007 International Conference on Integration Technology, pp. 701–705 (2007)

    Google Scholar 

  4. Rosa Zurera, M., Cobreces Alvarez, A.M., Nieto Borge, J.C., Jarabo Amores, M.P., Mata Moya, D.: Wavelet Denoising With Edge Detection for Speckle Reduction In SAR Images. In: EURASIP, pp. 1098–1102 (2007)

    Google Scholar 

  5. Yu, Y., Acton, S.T.: Speckle Reducing Anisotropic Diffusion. IEEE Transactions on Image Processing 11(11), 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  6. Do, M.N., Vetterli, M.: The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image Processing 14(12), 2091–2106 (2005)

    Article  Google Scholar 

  7. Da Cunha, A.L., Zhou, J.P., Do, M.N.: The Nonsubsampled Contourlet Transform: Theory, Design and Applications. IEEE Transactions on Image Processing 15(10), 3089–3101 (2006)

    Article  Google Scholar 

  8. Arsenault, H.H., April, G.: Properties of speckle integrated with a finite aperture and logarithmically transformed. JOSA 66(11), 1160–1163 (1976)

    Article  Google Scholar 

  9. The Microwave Earth Remote Sensing (MERS) Lab, http://www.mers.byu.edu

  10. Scatterometer Climate Record Pathfinder, http://www.scp.byu.edu

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mejía Muñoz, J.M. et al. (2010). SAR Image Denoising Using the Non-Subsampled Contourlet Transform and Morphological Operators. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds) Advances in Artificial Intelligence. MICAI 2010. Lecture Notes in Computer Science(), vol 6437. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16761-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16761-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16760-7

  • Online ISBN: 978-3-642-16761-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics