Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Full-Body Hybrid Motor Control for Reaching

  • Conference paper
Motion in Games (MIG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6459))

Included in the following conference series:

Abstract

In this paper, we present a full-body motor control mechanism that generates coordinated and diverse motion during a reaching action. Our framework animates the full human body (stretching arms, flexing of the spine, as well as stepping forward) to facilitate the desired end effector behavior. We propose a hierarchical control system for controlling the arms, spine, and legs of the articulated character and present a controller-scheduling algorithm for coordinating the sub-controllers. High-level parameters can be used to produce variation in the movements for specific reaching tasks. We demonstrate a wide set of behaviors such as stepping and squatting to reach low distant targets, twisting and swinging up to reach high lateral targets, and we show variation in the synthesized motions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Faraway, J., Reed, M., Wang, J.: Modeling 3D trajectories using Bezier curves with application to hand motion. Applied Statistics 56, 571–585 (2007)

    Google Scholar 

  2. Gray, H.: Anatomy, Descriptive and Surgical. Gramercy, New York (1977)

    Google Scholar 

  3. Inoue, K., Yoshida, H., Arai, T., Mae, Y.: Mobile manipulation of humanoids: Real-time control based on manipulability and stability. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2217–2222 (2000)

    Google Scholar 

  4. Kallmann, M.: Scalable solutions for interactive virtual humans that can manipulate objects. In: Proc. 1st Conf. on Artificial Intelligence and Interactive Digital Entertainment, pp. 69–75 (2005)

    Google Scholar 

  5. Kallmann, M.: Analytical inverse kinematics with body posture control. Computer Animation and Virtual Worlds 19(2), 79–91 (2008)

    Article  Google Scholar 

  6. Kallmann, M.: Autonomous object manipulation for virtual humans. In: SIGGRAPH 2008: ACM SIGGRAPH 2008 Courses, pp. 1–97. ACM, New York (2008)

    Google Scholar 

  7. Kallmann, M., Aubel, A., Abaci, T., Thalmann, D.: Planning collision-free reaching motions for interactive object manipulation and grasping. Computer Graphics Forum (Proc. Eurographics 2003) 22(3), 313–322 (2003)

    Article  Google Scholar 

  8. Kallmann, M., Marsella, S.: Hierarchical motion controllers for real-time autonomous virtual humans. In: Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin, D., Olivier, P., Rist, T. (eds.) IVA 2005. LNCS (LNAI), vol. 3661, pp. 243–265. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: SIGGRAPH 2008: ACM SIGGRAPH 2008 Courses, pp. 1–10. ACM, New York (2008)

    Google Scholar 

  10. Kuffner Jr., J., Latombe, J.C.: Interactive manipulation planning for animated characters. In: Proc. Pacific Graphics, p. 417 (2000)

    Google Scholar 

  11. Kulpa, R., Multon, F.: Fast inverse kinematics and kinetics solver for human-like figures. In: 5th IEEE-RAS Int. Conf. on Humanoid Robots, pp. 38–43 (December 2005)

    Google Scholar 

  12. Kulpa, R., Multon, F., Arnaldi, B.: Morphology-independent representation of motions for interactive human-like animation. CG Forum 24, 343–352 (2005)

    Google Scholar 

  13. Lee, S.H., Sifakis, E., Terzopoulos, D.: Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. on Graphics 28(4), 99, 1–17 (2009)

    Article  Google Scholar 

  14. Lee, S.H., Terzopoulos, D.: Heads up! Biomechanical modeling and neuromuscular control of the neck. ACM Transactions on Graphics 25(3), 1188–1198 (2006)

    Article  Google Scholar 

  15. Liu, Y.: Interactive reach planning for animated characters using hardware acceleration. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA (2003)

    Google Scholar 

  16. Monheit, G., Badler, N.I.: A kinematic model of the human spine and torso. IEEE Computer Graphics and Applications 11(2), 29–38 (1991)

    Article  Google Scholar 

  17. Murray, R.M., Sastry, S.S., Zexiang, L.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Inc., Boca Raton (1994)

    MATH  Google Scholar 

  18. Park, D.: Inverse kinematics, http://sites.google.com/site/diegopark2/computergraphics

  19. Shapiro, A., Kallmann, M., Faloutsos, P.: Interactive motion correction and object manipulation. In: Proc. Symp. on Int. 3D Graphics and Games, pp. 137–144 (2007)

    Google Scholar 

  20. Tolani, D., Goswami, A., Badler, N.I.: Real-time inverse kinematics techniques for anthropomorphic limbs. Graphical Models and Im. Proces. 62(5), 353–388 (2000)

    Article  MATH  Google Scholar 

  21. Williams, R.: The Animator’s Survival Kit. Faber, London (2001)

    Google Scholar 

  22. Yamane, K., Kuffner, J.J., Hodgins, J.K.: Synthesizing animations of human manipulation tasks. ACM Transactions on Graphics 23(3), 532–539 (2004)

    Article  Google Scholar 

  23. Yoshida, E., Kanoun, O., Esteves, C., Laumond, J.P.: Task-driven support polygon humanoids. In: 6th IEEE-RAS Int. Conf. on Humanoid Robots (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, W., Kapadia, M., Terzopoulos, D. (2010). Full-Body Hybrid Motor Control for Reaching. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds) Motion in Games. MIG 2010. Lecture Notes in Computer Science, vol 6459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16958-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16958-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16957-1

  • Online ISBN: 978-3-642-16958-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics