Abstract
In nonrigid motion analysis, deformation fields are often modeled using splines defined on a control-point grid. Inspired by recent development of meshfree methods, we propose a novel motion model that does not use control-point grids, nor use explicit node connections. We also propose a regularizer for the deformation field and the minimization algorithm. The method has promising features such as the handling of irregular regions, adaptive accuracy, the multi-scale modeling, and the potential for integrating physical properties into the registration process. Promising results were obtained on both synthetic and real imagery.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. on Med. Imag. 18, 712–721 (1999)
Hansen, M., Larsen, R., Lyngby, D., Glocker, B., Navab, N., Múnchen, G.: Adaptive parametrization of multivariate B-splines for image registration. In: CVPR, pp. 1–8 (2008)
Buhmann, M.: Radial basis functions: theory and implementations. Cambridge Monographs on Applied and Computational Mathematics, vol. 12 (2003)
Liu, G.R.: Mesh free methods: moving beyond the finite element method, 2nd edn. CRC, Boca Raton (2009)
Kobbelt, L., Botsch, M.: A survey of point-based techniques in computer graphics. Computers & Graphics 28, 801–814 (2004)
Makram-Ebeid, S., Somphone, O.: Non-rigid image registration using a hierarchical partition of unity finite element method. ICCVÂ 510, 7 (2007)
Wang, X., Metaxas, D., Chen, T., Axel, L.: Meshless deformable models for LV motion analysis. In: CVPR, pp. 1–8 (2008)
Rohde, G., Aldroubi, A., Dawant, B.: The adaptive bases algorithm for intensity-based nonrigid image registration. IEEE Trans. on Med. Imag. 22, 1470–1479 (2003)
Chen, T., Kim, S., Goyal, S., Jabbour, S., Zhou, J., Rajagopal, G., Haffty, B., Yue, N.: Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT. Medical Physics 37, 197 (2010)
Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and simple calculus on tensors in the Log-Euclidean framework. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 115–122. Springer, Heidelberg (2005)
Carlier, J.: Second set of fluid mechanics image sequences. In: European Project ‘Fluid image analysis and description’, FLUID (2005), http://www.fluid.irisa.fr/
Andreopoulos, A., Tsotsos, J.K.: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Medical Image Analysis 12, 335–357 (2008)
Kroon, D.J., Slump, C.H.: MRI modality transformation in demon registration. In: ISBI, Piscataway, NJ, USA, pp. 963–966. IEEE, Los Alamitos (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, W., Ribeiro, E. (2010). A Novel Consistency Regularizer for Meshless Nonrigid Image Registration. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6454. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17274-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-17274-8_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17273-1
Online ISBN: 978-3-642-17274-8
eBook Packages: Computer ScienceComputer Science (R0)