Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tissue Fate Prediction in Acute Ischemic Stroke Using Cuboid Models

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6454))

Included in the following conference series:

Abstract

Early and accurate prediction of tissue outcome is essential to the clinical decision-making process in acute ischemic stroke. We present a quantitative predictive model that combines tissue information available immediately after onset, measured using fluid attenuated inversion recovery (FLAIR), with multi-modal perfusion features (Tmax, MTT, and TTP) to infer the likely outcome of the tissue. A key component is the use of randomly extracted, overlapping, cuboids (i.e. rectangular volumes) whose size is automatically determined during learning. The prediction problem is formalized into a nonlinear spectral regression framework where the inputs are the local, multi-modal cuboids extracted from FLAIR and perfusion images at onset, and where the output is the local FLAIR intensity of the tissue 4 days after intervention. Experiments on 7 stroke patients demonstrate the effectiveness of our approach in predicting tissue fate and its superiority to linear models that are conventionally used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Heiss, W., Sobesky, J.: Can the penumbra be detected: MR versus PET imaging. J. Cereb Blood Flow Metab 25, 702 (2005)

    Article  Google Scholar 

  2. Shen, Q., Ren, H., Fisher, M., Duong, T.: Statistical prediction of tissue fate in acute ischemic brain injury. J. Cereb Blood Flow Metab 25, 1336–1345 (2005)

    Article  Google Scholar 

  3. Shen, Q., Duong, T.: Quantitative Prediction of Ischemic Stroke Tissue Fate. NMR Biomedicine 21, 839–848 (2008)

    Article  Google Scholar 

  4. Wu, O., Koroshetz, W., Ostergaard, L., Buonanno, F., Copen, W., Gonzalez, R., Rordorf, G., Rosen, B., Schwamm, L., Weisskoff, R., Sorensen, A.: Predicting tissue outcome in acute human cerebral ischemia using combined diffusion- and perfusion-weighted MR imaging. Stroke 32, 933–942 (2001)

    Article  Google Scholar 

  5. Wu, O., Christensen, S., Hjort, N., Dijkhuizen, R., Kucinski, T., Fiehler, J., Thomalla, G., Rother, J., Ostergaard, L.: Characterizing physiological heterogeneity of infarction risk in acute human ischaemic stroke using MRI. Brain 129, 2384–2393 (2006)

    Article  Google Scholar 

  6. Rose, S., Chalk, J., Griffin, M., Janke, A., Chen, F., McLachan, G., Peel, D., Zelaya, F., Markus, H., Jones, D., Simmons, A., OSullivan, M., Jarosz, J., Strugnell, W., Doddrell, D., Semple, J.: MRI based diffusion and perfusion predictive model to estimate stroke evolution. Magnetic Resonance Imaging 19, 1043–1053 (2001)

    Article  Google Scholar 

  7. Nguyen, V., Pien, H., Menenzes, N., Lopez, C., Melinosky, C., Wu, O., Sorensen, A., Cooperman, G., Ay, H., Koroshetz, W., Liu, Y., Nuutinen, J., Aronen, H., Karonen, J.: Stroke Tissue Outcome Prediction Using A Spatially-Correlated Model. In: PPIC (2008)

    Google Scholar 

  8. Maree, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwindows for robust image classification. In: CVPR, vol. 1, pp. 34–40 (2005)

    Google Scholar 

  9. Cai, D., He, X., Han, J.: Spectral Regression for Efficient Regularized Subspace Learning. In: ICCV (2007)

    Google Scholar 

  10. Liebeskind, D., Kidwell, C.: Advanced MR Imaging of Acute Stroke: The University of California at Los Angeles Endovascular Therapy Experience. Neuroimag. Clin. N. Am. 15, 455–466 (2005)

    Article  Google Scholar 

  11. Smith., S.: Fast robust automated brain extraction. Human Brain Mapping 17, 143–155 (2002)

    Article  Google Scholar 

  12. Jonsdottir, K., Ostergaard, L., Mouridsen, K.: Predicting Tissue Outcome From Acute Stroke Magnetic Resonance Imaging: Improving Model Performance by Optimal Sampling of Training Data. Stroke 40, 3006–3011 (2009)

    Article  Google Scholar 

  13. Chatterjee, S., Hadi, A.S.: Influential observations, high leverage points and outliers in linear regression. Statistical Science 1, 379–393 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scalzo, F., Hao, Q., Alger, J.R., Hu, X., Liebeskind, D.S. (2010). Tissue Fate Prediction in Acute Ischemic Stroke Using Cuboid Models. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6454. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17274-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17274-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17273-1

  • Online ISBN: 978-3-642-17274-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics