Abstract
In the case of cluttered backgrounds or low quality video input, automatic video object segmentation based on spatial-temporal information is still a problem without a general solution. A new approach is introduced in this work to deal with this problem by using depth information. The proposed approach obtains the initial object masks based on depth density image and motion segmentation. The objects boundaries are obtained by updating object masks using a simultaneous combination of multiple cues, including spatial location, colour, depth and motion, within a maximum likelihood method. The experimental result shows that this method is effective and has good output in cluttered backgrounds.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chien, S., Huang, Y., Hsieh, B., Ma, S., Chen, L.: Fast video segmentation algorithm with shadow cancellation, golbal motion compensation, and adaptive threshold techniques. IEEE Trans. on Multimedia 6, 732–748 (2004)
Piroddi, R., Vlachos, T.: A simple framework for spatio-temporal video segmentation and delayering using dense motion fields. IEEE Signal Processing Letters 13(7) (2006)
Wang, Y., Loe, K., Wu, J.: Spatiotemporal video segmentation based on graphical models. IEEE Trans. on Image Processing 14(7) (2005)
Parvizi, E., Wu, Q.M.J.: Multiple object tracking based on adaptive depth segmentation. In: Proceedings of the IEEE Conference on Computer and Robot Vision, pp. 273–277 (2008)
Nedevschi, S., Bota, S., Tomiuc, C.: Stereo-based pedestrian detection for collision-avoidance applications. IEEE Trans. on Intelligent Transportation Systems 10(3) (2009)
Cardoso, J.S., Cardoso, J.C.S., Corte-Real, L.: Object-based spatial segmentation of video guided by depth and motion information. In: Proc. IEEE workshop Motion and Video Computing, WMVC 2007 (2007)
Cigla, C., Alatan, A.A.: Object segmentation in multi-view video via colour, depth and motion cues. In: Proc. 15th IEEE International Conference on Image Processing, pp. 2724–2727 (2008)
Brown, M.Z., Burschka, D., Hager, G.D.: Advances in computational stereo. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(8) (2003)
Ong, E.P., Tye, B.J., Lin, W.S., Etoh, M.: An efficient video object segmentation scheme. In: Proc. International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 3361–3364 (2002)
Meier, T., Ngan, K.N.: Video segmentation for content-based coding. IEEE Transactions on Circuits and Systems for Video Technology 9(8) (1999)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimisation via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1222–1239 (2001)
Ntalianis, K.S., Doulamis, A.D., Doulamis, N.D., Kollias, S.D.: Unsupervised VOP segmentation of stereo-captured video sequences (2008)
Spagnolo, P., Orazio, T.D., Leo, M., Distante, A.: Moving object segmentation by background subtraction and temporal analysis. Image and Vision Computing 24(5), 411–423 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ma, Y., Chen, Q. (2010). Stereo-Based Object Segmentation Combining Spatio-Temporal Information. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17277-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-17277-9_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17276-2
Online ISBN: 978-3-642-17277-9
eBook Packages: Computer ScienceComputer Science (R0)