Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stereo-Based Object Segmentation Combining Spatio-Temporal Information

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6455))

Included in the following conference series:

Abstract

In the case of cluttered backgrounds or low quality video input, automatic video object segmentation based on spatial-temporal information is still a problem without a general solution. A new approach is introduced in this work to deal with this problem by using depth information. The proposed approach obtains the initial object masks based on depth density image and motion segmentation. The objects boundaries are obtained by updating object masks using a simultaneous combination of multiple cues, including spatial location, colour, depth and motion, within a maximum likelihood method. The experimental result shows that this method is effective and has good output in cluttered backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chien, S., Huang, Y., Hsieh, B., Ma, S., Chen, L.: Fast video segmentation algorithm with shadow cancellation, golbal motion compensation, and adaptive threshold techniques. IEEE Trans. on Multimedia 6, 732–748 (2004)

    Article  Google Scholar 

  2. Piroddi, R., Vlachos, T.: A simple framework for spatio-temporal video segmentation and delayering using dense motion fields. IEEE Signal Processing Letters 13(7) (2006)

    Google Scholar 

  3. Wang, Y., Loe, K., Wu, J.: Spatiotemporal video segmentation based on graphical models. IEEE Trans. on Image Processing 14(7) (2005)

    Google Scholar 

  4. Parvizi, E., Wu, Q.M.J.: Multiple object tracking based on adaptive depth segmentation. In: Proceedings of the IEEE Conference on Computer and Robot Vision, pp. 273–277 (2008)

    Google Scholar 

  5. Nedevschi, S., Bota, S., Tomiuc, C.: Stereo-based pedestrian detection for collision-avoidance applications. IEEE Trans. on Intelligent Transportation Systems 10(3) (2009)

    Google Scholar 

  6. Cardoso, J.S., Cardoso, J.C.S., Corte-Real, L.: Object-based spatial segmentation of video guided by depth and motion information. In: Proc. IEEE workshop Motion and Video Computing, WMVC 2007 (2007)

    Google Scholar 

  7. Cigla, C., Alatan, A.A.: Object segmentation in multi-view video via colour, depth and motion cues. In: Proc. 15th IEEE International Conference on Image Processing, pp. 2724–2727 (2008)

    Google Scholar 

  8. Brown, M.Z., Burschka, D., Hager, G.D.: Advances in computational stereo. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(8) (2003)

    Google Scholar 

  9. Ong, E.P., Tye, B.J., Lin, W.S., Etoh, M.: An efficient video object segmentation scheme. In: Proc. International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 3361–3364 (2002)

    Google Scholar 

  10. Meier, T., Ngan, K.N.: Video segmentation for content-based coding. IEEE Transactions on Circuits and Systems for Video Technology 9(8) (1999)

    Google Scholar 

  11. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimisation via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1222–1239 (2001)

    Article  Google Scholar 

  12. Ntalianis, K.S., Doulamis, A.D., Doulamis, N.D., Kollias, S.D.: Unsupervised VOP segmentation of stereo-captured video sequences (2008)

    Google Scholar 

  13. Spagnolo, P., Orazio, T.D., Leo, M., Distante, A.: Moving object segmentation by background subtraction and temporal analysis. Image and Vision Computing 24(5), 411–423 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, Y., Chen, Q. (2010). Stereo-Based Object Segmentation Combining Spatio-Temporal Information. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17277-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17277-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17276-2

  • Online ISBN: 978-3-642-17277-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics