Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

High Fidelity Sensor Simulations for the Virtual Autonomous Navigation Environment

  • Conference paper
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6472))

Abstract

The Virtual Autonomous Navigation Environment (VANE) is a high-fidelity simulation environment for ground robotics. Physics-based realism is the primary goal of the VANE. The VANE simulation incorporates realistic lighting, vehicle-terrain interaction, environmental attributions, and sensors. The sensor models, including camera, laser ranging, and GPS, are the focus of this work. These sensor models were designed to incorporate both internal (electronic) and external (environment) noise in order to produce a sensor output that closely matches that produced in real-world environments. This sensor output will allow roboticists to use simulation further into the development and debugging process before exposing robots to field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Craighead, J., Murphy, R., Burke, J., Goldiez, B.: A survey of commercial & open source unmanned vehicle simulators. In: 2007 IEEE International Conference on Robotics and Automation, pp. 852–857 (2007)

    Google Scholar 

  2. Balakirsky, S., Scrapper, C., Carpin, S., Lewis, M.: UsarSim: providing a framework for multirobot performance evaluation. In: Proceedings of PerMIS, Citeseer, vol. 2006 (2006)

    Google Scholar 

  3. Goodin, C., Kala, R., Carrrillo, A., Liu, L.Y.: Sensor modeling for the virtual autonomous navigation environment. IEEE Sensors (2009)

    Google Scholar 

  4. Subbarao, M., Nikzad, A.: Model for image sensing and digitization in machine vision. In: Proceedings of SPIE, vol. 1385, p. 70. SPIE, San Jose (1991)

    Google Scholar 

  5. Born, M., Wolf, E.: Principles of Optics, 6th edn. Pergamon Press, Elmsford (1980)

    Google Scholar 

  6. Tuley, J., Vandapel, N., Hebert, M.: Analysis and Removal of artifacts in 3-D LADAR Data. In: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 2203–2210 (2005)

    Google Scholar 

  7. Rong, L., Chen, W., Yu, S., Song, W.: Mathematical model of coordinate transformations for 3D Depth-of-field collection system. In: 6th IEEE International Conference on Industrial Informatics, INDIN 2008, pp. 80–85 (2008)

    Google Scholar 

  8. SOPAC: Scripps orbit and permanent array center (2010), http://sopac.ucsd.edu/cgi-bin/dbShowArraySitesMap.cgi

  9. Mehrtash, M.: Gps navigation toolbox gnt08.1.2 GNT08.1.2 (2008), http://www.mathworks.com/matlabcentral/fileexchange/20578i

  10. RINEX: Receiver independent exchange format, ver. 2.10 (2009), http://gps.wva.net/html.common/rinex.html

  11. Montenbruck, O., Garcia-Fernandez, M.: Ionosphere Path Delay Models for Spaceborne GPS. Deutsches Zentrum für Luft- und Raumfahrt DLR-GSOC TN 05-07 (2005)

    Google Scholar 

  12. Niell, A.E.: Improved atomspheric mapping functions for VLBI and GPS. Earth Planets Space 52, 699–702 (2000)

    Article  Google Scholar 

  13. Niell, A.: The IMF Mapping Functions. In: GPSMet Workshop (2003)

    Google Scholar 

  14. Kim, H.I., Ha, J., Park, K.D., Lee, S., Kim, J.: Comparison of Tropospheric Signal Delay Models for GNSS Error Simulation. Journal of Astronomy and Space Sciences 26, 21–220 (2000)

    Google Scholar 

  15. Hwang, C., Hwang, L.S.: Satellite orbit error due to geopotential model error using perturbation theory: applications to ROCSAT-2 and COSMIC missions. Computers and Geosciences 28, 357–367 (2000)

    Article  Google Scholar 

  16. Parkinson, B., Spilker, J.: The global positioning system: theory and applications. In: Aiaa (1996)

    Google Scholar 

  17. Rohde, M., Crawford, J., Toschlog, M., Iagnemma, K., Kewlani, G., Cummins, C., Jones, R., Horner, D.: An interactive physics-based unmanned ground vehicle simulator leveraging open source gaming technology: progress in the development and application of the virtual autonomous navigation environment (VANE) desktop. In: Gerhart, G.R., Gage, D.W., Shoemaker, C.M. (eds.) Unmanned Systems Technology XI. SPIE, Orlando (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goodin, C., Durst, P.J., Gates, B., Cummins, C., Priddy, J. (2010). High Fidelity Sensor Simulations for the Virtual Autonomous Navigation Environment. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds) Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2010. Lecture Notes in Computer Science(), vol 6472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17319-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17319-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17318-9

  • Online ISBN: 978-3-642-17319-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics