Abstract
Stability of bipedal locomotion is analyzed using a model of a planar biped written in the framework of systems with unilateral constraints. Based on this model, two different stable walking gaits are derived: one which fulfills the widely used criterion of the Zero Moment Point (ZMP) and another one violating this criterion. Both gaits are determined using systematic model-based designs. The model and the two gaits are used in simulations to illustrate conservatisms of two commonly used methods for stability analysis of bipedal walking: the ZMP criterion and Poincaré return map method. We show that none of these two methods can give us a general qualification of bipedal walking stability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Goswami, A.: Foot rotation indicator (FRI) point: A new gait planning tool to evaluate postural stability of biped robots. In: IEEE International Conference on Robotics and Automation, pp. 47–52 (1999)
Goswami, A., Espiau, B., Keramane, A.: Limit cycles in a passive compass gait biped and passivity-mimicking control laws. Autonomous Robots 4, 273–286 (1997)
Hobbelen, D., Wisse, M.: Limit cycle walking. Humanoid Robots, Human-like Machines (2007)
Leine, R., Nijmeijer, H.: Dynamics and bifurcation of non smooth mechanical systems. Springer, Berlin (2004)
Leine, R., van de Wouw, N.: Stability and convergence of mechanical systems with unilateral constraints. Springer, Berlin (2008)
Moreau, J.: Unilateral contact and dry friction in finite freedom dynamics. In: Nonsmooth mechanics and Applications, pp. 1–82 (1988)
Pratt, J., Tedrake, R.: Velocity-based stability margins for fast bipedal walking. In: First Ruperto Carola symposium: fast motions in biomechanics and robots (2005)
Siciliano, B., Khatib, O.: Springer handbook of robotics. Springer-Verlag New York Inc., Heidelberg (2008)
Sinnet, R., Ames, A.: 2d bipedal walking with knees and feet: a hybrid control approach. In: Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, pp. 3200–3207 (2009)
Spong, M., Bullo, F.: Controlled symmetries and passive walking. IEEE Transactions on Automatic Control 50(7), 1025–1031 (2005)
Spong, M., Hutchinson, S., Vidyasagar, M.: Robot modeling and control. John Wiley and Sons, Inc., New York (2006)
Vukobratovic, M., Borovac, B., Surla, D., Stokic, D.: Scientific Fundamentals of Robotics 7: Biped Locomotion. Springer, New York (1990)
Westervelt, E., Grizzle, J., Chevallereau, C., Choi, J., Morris, B.: Feedback control of dynamic bipedal robot locomotion. CRC Press, New York (2007)
Wight, D.L., Kubica, E.G., Wang, D.W.L.: Introduction of the foot placement estimator: A dynamic measure of balance for bipedal robotics. Journal of Computational and Nonlinear Dynamics 3, 1–9 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van Zutven, P., Kostić, D., Nijmeijer, H. (2010). On the Stability of Bipedal Walking. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds) Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2010. Lecture Notes in Computer Science(), vol 6472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17319-6_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-17319-6_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17318-9
Online ISBN: 978-3-642-17319-6
eBook Packages: Computer ScienceComputer Science (R0)