Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Equality of Probabilistic Terms

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6355))

Abstract

We consider a mild extension of universal algebra in which terms are built both from deterministic and probabilistic variables, and are interpreted as distributions. We formulate an equational proof system to establish equality between probabilistic terms, show its soundness, and provide heuristics for proving the validity of equations. Moreover, we provide decision procedures for deciding the validity of a system of equations under specific theories that are commonly used in cryptographic proofs, and use concatenation, truncation, and xor. We illustrate the applicability of our formalism in cryptographic proofs, showing how it can be used to prove standard equalities such as optimistic sampling and one-time padding as well as non-trivial equalities for standard schemes such as OAEP.

This work was partially supported by French ANR SESUR-012, SCALP, Spanish project TIN2009-14599 DESAFIOS 10, and Madrid Regional project S2009TIC-1465 PROMETIDOS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  2. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryptographic proofs. In: Proceedings of POPL 2009, pp. 90–101. ACM Press, New York (2009)

    Google Scholar 

  3. Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations of equational theories against passive adversaries. Inf. Comput. 207(4), 496–520 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Bellare, M., Rogaway, P.: Optimal asymmetric encryption – How to encrypt with RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  6. Bresson, E., Lakhnech, Y., Mazaré, L., Warinschi, B.: A generalization of ddh with applications to protocol analysis and computational soundness. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 482–499. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in cryptographic protocols. Journal of Computer Security 14(1), 1–43 (2006)

    Article  Google Scholar 

  8. Courant, J., Daubignard, M., Ene, C., Lafourcade, P., Lakhnech, Y.: Towards automated proofs for asymmetric encryption schemes in the random oracle model. In: Proceedings of CCS 2008, pp. 371–380. ACM Press, New York (2008)

    Google Scholar 

  9. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under the RSA assumption. Journal of Cryptology 17(2), 81–104 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goguen, J.A., Meseguer, J.: Completeness of many-sorted equational logic. SIGPLAN Not. 16(7), 24–32 (1981)

    Article  MATH  Google Scholar 

  11. Impagliazzo, R., Kapron, B.M.: Logics for reasoning about cryptographic constructions. Journal of Computer and Systems Sciences 72(2), 286–320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kumar, N., Sen, K., Meseguer, J., Agha, G.: A rewriting based model for probabilistic distributed object systems. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 32–46. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Nipkow, T.: Unification in primal algebras, their powers and their varieties. J. ACM 37(4), 742–776 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  15. Stern, J.: Why provable security matters? In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 449–461. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barthe, G., Daubignard, M., Kapron, B., Lakhnech, Y., Laporte, V. (2010). On the Equality of Probabilistic Terms. In: Clarke, E.M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2010. Lecture Notes in Computer Science(), vol 6355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17511-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17511-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17510-7

  • Online ISBN: 978-3-642-17511-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics