Abstract
We consider a mild extension of universal algebra in which terms are built both from deterministic and probabilistic variables, and are interpreted as distributions. We formulate an equational proof system to establish equality between probabilistic terms, show its soundness, and provide heuristics for proving the validity of equations. Moreover, we provide decision procedures for deciding the validity of a system of equations under specific theories that are commonly used in cryptographic proofs, and use concatenation, truncation, and xor. We illustrate the applicability of our formalism in cryptographic proofs, showing how it can be used to prove standard equalities such as optimistic sampling and one-time padding as well as non-trivial equalities for standard schemes such as OAEP.
This work was partially supported by French ANR SESUR-012, SCALP, Spanish project TIN2009-14599 DESAFIOS 10, and Madrid Regional project S2009TIC-1465 PROMETIDOS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryptographic proofs. In: Proceedings of POPL 2009, pp. 90–101. ACM Press, New York (2009)
Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations of equational theories against passive adversaries. Inf. Comput. 207(4), 496–520 (2009)
Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)
Bellare, M., Rogaway, P.: Optimal asymmetric encryption – How to encrypt with RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)
Bresson, E., Lakhnech, Y., Mazaré, L., Warinschi, B.: A generalization of ddh with applications to protocol analysis and computational soundness. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 482–499. Springer, Heidelberg (2007)
Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in cryptographic protocols. Journal of Computer Security 14(1), 1–43 (2006)
Courant, J., Daubignard, M., Ene, C., Lafourcade, P., Lakhnech, Y.: Towards automated proofs for asymmetric encryption schemes in the random oracle model. In: Proceedings of CCS 2008, pp. 371–380. ACM Press, New York (2008)
Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under the RSA assumption. Journal of Cryptology 17(2), 81–104 (2004)
Goguen, J.A., Meseguer, J.: Completeness of many-sorted equational logic. SIGPLAN Not. 16(7), 24–32 (1981)
Impagliazzo, R., Kapron, B.M.: Logics for reasoning about cryptographic constructions. Journal of Computer and Systems Sciences 72(2), 286–320 (2006)
Kumar, N., Sen, K., Meseguer, J., Agha, G.: A rewriting based model for probabilistic distributed object systems. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 32–46. Springer, Heidelberg (2003)
Nipkow, T.: Unification in primal algebras, their powers and their varieties. J. ACM 37(4), 742–776 (1990)
Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press, Cambridge (2008)
Stern, J.: Why provable security matters? In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 449–461. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Barthe, G., Daubignard, M., Kapron, B., Lakhnech, Y., Laporte, V. (2010). On the Equality of Probabilistic Terms. In: Clarke, E.M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2010. Lecture Notes in Computer Science(), vol 6355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17511-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-17511-4_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17510-7
Online ISBN: 978-3-642-17511-4
eBook Packages: Computer ScienceComputer Science (R0)