Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Theoretical Framework for Multi-sphere Support Vector Data Description

  • Conference paper
Neural Information Processing. Models and Applications (ICONIP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6444))

Included in the following conference series:

  • 2761 Accesses

Abstract

In support vector data description (SVDD) a spherically shaped boundary around a normal data set is used to separate this set from abnormal data. The volume of this data description is minimized to reduce the chance of accepting abnormal data. However the SVDD does not guarantee that the single spherically shaped boundary can best describe the normal data set if there are some distinctive data distributions in this set. A better description is the use of multiple spheres, however there is currently no investigation available. In this paper, we propose a theoretical framework to multi-sphere SVDD in which an optimisation problem and an iterative algorithm are proposed to determine model parameters for multi-sphere SVDD to provide a better data description to the normal data set. We prove that the classification error will be reduced after each iteration in this learning process. Experimental results on 28 well-known data sets show that the proposed multi-sphere SVDD provides lower classification error rate comparing with the standard single-sphere SVDD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bishop, C.M.: Novelty detection and neural network validation. In: IEE Proceedings of Vision, Image and Signal Processing, pp. 217–222 (1994)

    Google Scholar 

  2. Barnett, V., Lewis, T.: Outliers in statistical data, 3rd edn. Wiley, Chichester (1978)

    MATH  Google Scholar 

  3. Campbell, C., Bennet, K.P.: A linear programming approach to novelty detection. In: Advances in Neural Information Processing Systems, vol. 14 (2001)

    Google Scholar 

  4. Chang, C.-C., Lin, C.-J.: LIBSVM: A Library for Support Vector Machines, http://www.csie.ntu.edu.tw/~cjlinlibsvm

  5. Hao, P.Y., Liu, Y.H.: A New Multi-class Support Vector Machine with Multi-sphere in the Feature Space. In: Okuno, H.G., Ali, M. (eds.) IEA/AIE 2007. LNCS (LNAI), vol. 4570, pp. 756–765. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training set: One-sided selection. In: Proc. 14th International Conference on Machine Learning, pp. 179–186 (1997)

    Google Scholar 

  7. Le, T., Tran, D., Ma, W., Sharma, D.: An Optimal Sphere and Two Large Margins Approach for Novelty Detection. In: Proc. IEEE World Congress on Computational Intelligence (WCCI) (accepted 2010)

    Google Scholar 

  8. Lin, Y., Lee, Y., Wahba, G.: Support vector machine for classification in nonstandard situations. Machine Learning 15, 1115–1148 (2002)

    MATH  Google Scholar 

  9. Moya, M.M., Koch, M.W., Hostetler, L.D.: One-class classifier networks for target recognition applications. In: Proceedings of World Congress on Neural Networks, pp. 797–801 (1991)

    Google Scholar 

  10. Mu, T., Nandi, A.K.: Multiclass Classification Based on Extended Support Vector Data Description. IEEE Transactions on Systems, Man, And Cybernetics Part B: Cybernetics 39(5), 1206–1217 (2009)

    Article  Google Scholar 

  11. Parra, L., Deco, G., Miesbach, S.: Statistical independence and novelty detection with information preserving nonlinear maps. Neural Computation 8, 260–269 (1996)

    Article  Google Scholar 

  12. Roberts, S., Tarassenko, L.: A Probabilistic Resource Allocation Network for Novelty Detection. Neural Computation 6, 270–284 (1994)

    Article  Google Scholar 

  13. Schlkopf, B., Smola, A.J.: Learning with kernels. The MIT Press, Cambridge (2002)

    Google Scholar 

  14. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Machine Learning 54, 45–56 (2004)

    Article  MATH  Google Scholar 

  15. Tax, D.M.J.: Datasets (2009), http://ict.ewi.tudelft.nl/~davidt/occ/index.html

  16. Towel, G.G.: Local expert autoassociator for anomaly detection. In: Proc. 17th International Conference on Machine Learning, pp. 1023–1030. Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

  17. Vapnik, V.: The nature of statistical learning theory. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  18. Vert, J., Vert, J.P.: Consistency and convergence rates of one class svm and related algorithm. Journal of Machine Learning Research 7, 817–854 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Xiao, Y., Liu, B., Cao, L., Wu, X., Zhang, C., Hao, Z., Yang, F., Cao, J.: Multi-sphere Support Vector Data Description for Outliers Detection on Multi-Distribution Data. In: Proc. IEEE International Conference on Data Mining Workshops, pp. 82–88 (2009)

    Google Scholar 

  20. Yu, M., Ye, J.: A Small Sphere and Large Margin Approach for Novelty Detection Using Training Data with Outliers. IEEE Transaction on Pattern Analysis and Machine Intelligence 31, 2088–2092 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Le, T., Tran, D., Ma, W., Sharma, D. (2010). A Theoretical Framework for Multi-sphere Support Vector Data Description. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Models and Applications. ICONIP 2010. Lecture Notes in Computer Science, vol 6444. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17534-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17534-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17533-6

  • Online ISBN: 978-3-642-17534-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics