Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stationary Subspace Analysis as a Generalized Eigenvalue Problem

  • Conference paper
Neural Information Processing. Theory and Algorithms (ICONIP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6443))

Included in the following conference series:

Abstract

Understanding non-stationary effects is one of the key challenges in data analysis. However, in many settings the observation is a mixture of stationary and non-stationary sources. The aim of Stationary Subspace Analysis (SSA) is to factorize multivariate data into its stationary and non-stationary components. In this paper, we propose a novel SSA algorithm (ASSA) that extracts stationary sources from multiple time series blocks. It has a globally optimal solution under certain assumptions that can be obtained by solving a generalized eigenvalue problem. Apart from the numerical advantages, we also show that compared to the existing method, fewer blocks are required in ASSA to guarantee the identifiability of the solution. We demonstrate the validity of our approach in simulations and in an application to domain adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shenoy, P., Krauledat, M., Blankertz, B., Rao, R.P.N., Müller, k.R.: Towards Adaptive Classification for BCI. Journal of Neural Engineering, 3, 13–23 (2006)

    Article  Google Scholar 

  2. Engle, R.F., Granger, C.W.J.: Co-integration and error correction: representation, estimation, and testing. Econometrica 55(2), 251–276 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cohen, L., Ayrahami-Bakish, G., Last, M., Kandel, A., Kipersztok, O.: Real-time data mining of non-stationary data streams from sensor networks. Information Fusion 9(3), 344–353 (2008)

    Article  Google Scholar 

  4. von Bünau, P., Meinecke, F., Meinecke, F.C., Kiráry, F.C., Müller, K.R.: Finding Stationary Subspaces in Multivariate Time Series. Phys. Rev. Lett. 103(21), 21401 (2009)

    Google Scholar 

  5. Meinecke, F.C., von Bünau, P., Kawanabe, M., Müller, K.R.: Learning invariances with Stationary Subspace Analysis. In: IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 87–92 (2009)

    Google Scholar 

  6. Hamilton, J.D.: Time series analysis. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  7. von Bünau, P., Meinecke, F.C., Kiráry, F.C., Müller, K.R.: Finding Stationary Subspaces in Multivariate Time Series, Supplemental Materials. EPAPPS Document, no.E-PRLTA-103-014948 (EPAPS, http://www.aip.org/pubservs/epaps.html

  8. Chatelin, F.: Eigenvalues of matrices. John Wiley and Sons, Chichester (1993)

    MATH  Google Scholar 

  9. Daumé III, H., Marcu, D.: Domain adaptation for statistical classifiers. Journal of Artificial Intelligence Research 26(1), 101–126 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and Inference 90(2), 227–244 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. Software (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hara, S., Kawahara, Y., Washio, T., von Bünau, P. (2010). Stationary Subspace Analysis as a Generalized Eigenvalue Problem. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Theory and Algorithms. ICONIP 2010. Lecture Notes in Computer Science, vol 6443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17537-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17537-4_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17536-7

  • Online ISBN: 978-3-642-17537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics