Abstract
We propose a new object classification model, which is applied to a computer-vision-based traffic surveillance system. The main issue in this paper is to recognize various objects on a road such as vehicles, pedestrians and unknown backgrounds. In order to achieve robust classification performance against translation and scale variation of the objects, we propose new C1-like features which modify the conventional C1 features in the Hierarchical MAX model to get the computational efficiency. Also, we develop a new adaptively boosted Gaussian mixture model to build a classifier for multi-class objects recognition in real road environments. Experimental results show the excellence of the proposed model for multi-class object recognition and can be successfully used for constructing a traffic surveillance system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wijnhoven, R., De With, P.H.N.: 3D Wire-frame Object-modeling Experiments for Video Surveillance. In: Proc. of 27th Symp. Inform. Theory in the Benelux, pp. 101–108 (2006)
Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust Object Recognition with Cortex-like Mechanisms. Trans. on Pattern Analysis and Machine Intelligence (PAMI) 29(3), 411–426 (2007)
Wijnhoven, R., De With, P.H.N.: Patch-based Experiments with Object Classification in Video Surveillance. In: Blanc-Talon, J., et al. (eds.) ACIVS 2007. LNCS, vol. 4678, pp. 285–296. Springer, Heidelberg (2007)
Woo, J.-W., Lim, Y.-C., Lee, M.: Obstacle Categorization Based on Hybridizing Global and Local Features. In: Chan, J.H. (ed.) ICONIP 2009, Part II. LNCS, vol. 5864, pp. 1–10. Springer, Heidelberg (2009)
Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. J. Data Min. Knowl. Discov. 2, 121–167 (1998)
Scherrer, B.: Gaussian Mixture Model Classifiers (2007)
Schapire, R.E.: The Strength of Weak Learnability. Machine Learning 5, 197–227 (1990)
Freund, Y., Schapire, R.E.: A Short Introduction to Boosting. The Japanese Society for Artificial Intelligence 14(5), 771–780 (1999)
Riesenhuber, M., Poggio, T.: Hierarchical Models of Object Recognition in Cortex. J. Neurosci. 2, 1019–1025 (1999)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. J. of the Royal Statistical Society 39(1), 1–38 (1977)
 Blimes, J. A.: A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical Report ICSI-TR-97-021 (1997)
Verbeek, J., Vlassis, N., Krose, B.: Efficient Greedy Learning of Gaussian Mixture Models. Neural Computation 15, 469–485 (2003)
Center for Biological & Computational Learning, MIT, http://cbcl.mit.edu
Computational Vision Lab, Caltech, http://www.vision.caltech.edu
Daimler Pedestrian Detection Benchmark Data Set, http://www.gavrila.net
Artificial Brain Research Lab, Kyungpook National University, http://abr.knu.ac.kr/ABR_surveillance_DB.html
Fergus, R., Perona, P., Zisserman, A.: Object Class Recognition by Unsupervised Scale-Invariant Learning. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 264–271 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, W., Lee, M. (2010). A Multi-class Object Classifier Using Boosted Gaussian Mixture Model. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Theory and Algorithms. ICONIP 2010. Lecture Notes in Computer Science, vol 6443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17537-4_53
Download citation
DOI: https://doi.org/10.1007/978-3-642-17537-4_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17536-7
Online ISBN: 978-3-642-17537-4
eBook Packages: Computer ScienceComputer Science (R0)