Abstract
In this paper, we present a hierarchical multi-label classification system for visual concepts detection and image annotation. Hierarchical multi-label classification (HMLC) is a variant of classification where an instance may belong to multiple classes at the same time and these classes/labels are organized in a hierarchy. The system is composed of two parts: feature extraction and classification/annotation. The feature extraction part provides global and local descriptions of the images. These descriptions are then used to learn a classifier and to annotate an image with the corresponding concepts. To this end, we use predictive clustering trees (PCTs), which are able to classify target concepts that are organized in a hierarchy. Our approach to HMLC exploits the annotation hierarchy by building a single predictive clustering tree that can simultaneously predict all of the labels used to annotate an image. Moreover, we constructed ensembles (random forests) of PCTs, to improve the predictive performance. We tested our system on the image database from the ImageCLEF@ICPR 2010 photo annotation task. The extensive experiments conducted on the benchmark database show that our system has very high predictive performance and can be easily scaled to large number of visual concepts and large amounts of data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees. In: Proc. of the 15th ICML, pp. 55–63 (1998)
Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)
Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Ensembles of Multi-Objective Decision Trees. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 624–631. Springer, Heidelberg (2007)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp. 2169–2178 (2006)
Li, J., Wang, J.Z.: Real-Time Computerized Annotation of Pictures. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(6), 985–1002 (2008)
Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Nowak, S., Dunker, P.: Overview of the CLEF 2009 Large-Scale Visual Concept Detection and Annotation Task. In: Peters, C., Caputo, B., Gonzalo, J., Jones, G.J.F., Kalpathy-Cramer, J., Müller, H., Tsikrika, T. (eds.) CLEF 2009. LNCS, vol. 6242, pp. 94–109. Springer, Heidelberg (2010)
Nowak, S., Lukashevich, H.: Multilabel classification evaluation using ontology information. In: Workshop on IRMLeS, Heraklion, Greece (2009)
Nowak, S.: ImageCLEF@ICPR Contest: Challenges, Methodologies and Results of the PhotoAnnotation Task. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS, vol. 6388, pp. 140–153. Springer, Heidelberg (2010)
Oliva, A., Torralba, A.: Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope. International Journal of Computer Vision 42(3), 145–175 (2001)
Silla, C., Freitas, A.: A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery (in press, 2010)
Slavkov, I., Gjorgjioski, V., Struyf, J., Džeroski, S.: Finding explained groups of time-course gene expression profiles with predictive clustering trees. Molecular BioSystems 6(4), 729–740 (2010)
Takala, V., Ahonen, T., Pietikainen, M.: Block-Based Methods for Image Retrieval Using Local Binary Patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 882–891. Springer, Heidelberg (2005)
Van de Sande, K., Gevers, T., Snoek., C.: A comparison of color features for visual concept classification. In: CIVR, pp. 141–150 (2008)
Vens, C., Struyf, J., Schietgat, L., Dzeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Machine Learning 73(2), 185–214 (2008)
Exchangeable image file format, http://en.wikipedia.org/wiki/EXIF
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dimitrovski, I., Kocev, D., Loskovska, S., Džeroski, S. (2010). Detection of Visual Concepts and Annotation of Images Using Ensembles of Trees for Hierarchical Multi-Label Classification. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds) Recognizing Patterns in Signals, Speech, Images and Videos. ICPR 2010. Lecture Notes in Computer Science, vol 6388. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17711-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-17711-8_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-17710-1
Online ISBN: 978-3-642-17711-8
eBook Packages: Computer ScienceComputer Science (R0)