Abstract
In this paper, use Nanning city as an example to show application of Background information database in drought monitoring. A near-real time drought monitoring approach is developed using Terra-Moderate Resolution Imaging Spectoradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) products. The approach is called Vegetation Temperature Condition Index (VTCI), which integrates land surface reflectance and thermal properties. VTCI is defined as the ratio of LST differences among pixels with a specific NDVI value in a sufficiently large study area; The ground-measured precipitation data from a study area covering Nanning in Guangxi , CHINA, are used to validate the drought monitoring approach. Taking the result of drought monitoring in background information of Nanning city ,the area of farmland drought of Mild drought Moderate droughts Severe drought were 223607.2 Ha ,310596.9 Ha and 513.2 Ha.
Chapter PDF
Similar content being viewed by others
References
Wilhite, D.A., Glantz, M.H.: Understanding the drought phenomenon: the role of definitions. Water International 10(3), 111–120 (1985)
Nemani, R., Pierce, L., Running, S., Goward, S.: Developing satellite-derived estimates of surface moisture status. Journal of Applied Meteorology 32(3), 548–557 (1993)
Volcani, A., Karnieli, A., Svoray, T.: The use of remote sensing and GIS for spatio-temporal analysis of the physiological state of a semi-arid forest with respect to drought years. Forest Ecology and Management 215(1-3), 239–250 (2005)
Tadesse, T., Brown, J.F., Hayes, M.J.: A new approach for predicting drought-related vegetation stress: integrating satellite, climate, and biophysical data over the U.S. central plains. ISPRS Journal of Photogrammetry and Remote Sensing 59(4), 244–253 (2005)
Bajgiran, P.R., Darvishsefat, A.A., Khalili, A., Makhdoum, M.F.: Using AVHRR-based vegetation indices for drought monitoring in the Northwest of Iran. Journal of Arid Environments 72(6), 1086–1096 (2008)
Jeyaseelan, A.T., Kogan, F.N.: Evaluation of GVI based indices for drought early warning in India. In: Disaster Forewarning Diagnostic Methods and Management. Proceedings of SPIE, vol. 6412, pp. 4120–4120 (2006)
Marshall, G., Zhou, X.: Drought detection in semiarid regions using remote sensing of vegetation indices and drought indices. In: Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS 2004), September 2004, vol. 3, pp. 1555–1558 (2004)
Liu, L., Xiang, D., Dong, X., Zhou, Z.: Improvement of the drought monitoring model based on the cloud parameters method and remote sensing data. In: Proceedings of the 1st International Workshop on Knowledge Discovery and Data Mining (WKDD 2008), pp. 293–296 (2008)
Mo, W., Wang, Z., Sun, H., Ma, L., He, L.: Remote Sensing Monitoring of Farmland Drought Based on Vegetation Supply Water Index. Journal of Nanjing Institute of Meteorology 29(3), 396–401 (2006)
Naira, C., Robert, L., Ramata, M., Marouane, T.: Surface soil moisture status over the Mackenzie River Basin using a temperature/vegetation index. In: Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS 2007), pp. 1846–1848 (2007)
Patel, N.R., Anapashsha, R., Kumar, S., Saha, S.K., Dadhwal, V.K.: Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status. International Journal of Remote Sensing 30(1), 23–39 (2008)
Li, W., Mao, S.Y., Chen, W.: A new method of cloud detection in MODIS image. In: Proceedings of the 7th International Conference on Electronic Measurement and Instruments, vol. 7, pp. 281–285 (2005)
Cai, G.: MODIS data based thermal inertia and land surface temperature modeling and their applications in determination of soil moisture and heat exchange, doctoral dissertation,M.S. thesis, Institute of remote sensing applications Chinese academy of sciences, Advances in Artificial Intelligence, vol. 10 (2006)
Liu, L., Xiang, D., Zhou, Z., Dong, X.: Analyses the modification functions of the drought monitoring model based on the cloud parameters method. In: Proceedings of the 1st International Congress on Image and Signal Processing (CISP 2008), vol. 4, pp. 687–691 (2008)
Reed, B.C., Brown, J.F., VanderZee, D., Loveland, T.R., Merchant, J.W., Ohlen, D.O.: Measuring phenological variability from satellite imagery. Journal of Vegetation Science 5(5), 703–714 (1994)
Hamel, S., Garel, M., Festa-Bianchet, M., Gaillard, J.-M., Côté, S.D.: Spring Normalized Difference Vegetation Index (NDVI) predicts annual variation in timing of peak faecal crude protein in mountain ungulates. Journal of Applied Ecology 46(3), 582–589 (2009)
Kerr, J.T., Ostrovsky, M.: Fromspace to species: ecological applications for remote sensing. Trends in Ecology & Evolution 18(6), 299–305 (2003)
Julien, Y., Sobrino, J.A.: The Yearly Land Cover Dynamics (YLCD) method: an analysis of global vegetation from NDVI and LST parameters. Remote Sensing of Environment 113(2), 329–334 (2009)
Sandholt, I., Rasmussen, K., Andersen, J.: A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment 79(2-3), 213–224 (2002)
Qi, S., Wang, C., Niu, Z.: Evaluating soil moisture states in China using the temperature/vegetation dryness index (TVDI). Joutnal of Remote Sensing 15, 420–427 (2003)
Li, W., Li, D.: The universal cloud detection algorithm of MODIS data. In: Geoinformatics 2006: Remotely Sensed Data and Information. Proceedings of SPIE, vol. 6419, p. 4190 (October 2006)
Li, C., Li, H.: Study on winter wheat drought monitoring by TVDI in Hebei Province. In: Remote Sensing and Modeling of Ecosystems for Sustainability III, San Diego, Calif., USA, August 2006. Proceedings of SPIE, vol. 6298, pp. 2981–2981 (2006)
Jin, C., Qin, Q.M., Zhu, L., Nan, P., Ghulam, A.: TVDI based crop yield prediction model for stressed surfaces—a case study on Ningxia Huizu autonomous region of China. In: Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS 2008), pp. 4656–4658 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 IFIP International Federation for Information Processing
About this paper
Cite this paper
Yang, X., Lu, W., Wu, C., Li, Y., Zhong, S. (2011). Application of Background Information Database in Drought Monitoring of Guangxi in 2010. In: Li, D., Liu, Y., Chen, Y. (eds) Computer and Computing Technologies in Agriculture IV. CCTA 2010. IFIP Advances in Information and Communication Technology, vol 344. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18333-1_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-18333-1_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18332-4
Online ISBN: 978-3-642-18333-1
eBook Packages: Computer ScienceComputer Science (R0)