Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Straight-Line RAC Drawing Problem Is NP-Hard

  • Conference paper
SOFSEM 2011: Theory and Practice of Computer Science (SOFSEM 2011)

Abstract

Recent cognitive experiments have shown that the negative impact of an edge crossing on the human understanding of a graph drawing, tends to be eliminated in the case where the crossing angles are greater than 70 degrees. This motivated the study of RAC drawings, in which every pair of crossing edges intersects at right angle. In this work, we demonstrate a class of graphs with unique RAC combinatorial embedding and we employ members of this class in order to show that it is \({\mathcal{NP}}\)-hard to decide whether a graph admits a straight-line RAC drawing.

Funded by the Operational Programme on Education and Lifelong Learning (Action Hrakleitos-II) which is co-financed by Greece and the European Union (European Social Fund NSRF 2007-2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angelini, P., Cittadini, L., Di Battista, G., Didimo, W., Frati, F., Kaufmann, M., Symvonis, A.: On the perspectives opened by right angle crossing drawings. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 21–32. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Argyriou, E.N., Bekos, M.A., Symvonis, A.: Maximizing the total resolution of graphs. In: 18th International Symposium on Graph Drawing (2010) (to appear)

    Google Scholar 

  3. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing problem is NP-hard. CoRR abs/1009.5227 (2010)

    Google Scholar 

  4. Arikushi, K., Fulek, R., Keszegh, B., Moric, F., Toth, C.: Drawing graphs with orthogonal crossings. In: 36th International Workshop on Graph Theoretic Concepts in Computer Science (2010) (to appear)

    Google Scholar 

  5. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  6. Bodlaender, H.L., Tel, G.: A note on rectilinearity and angular resolution. Journal of Graph Algorithms and Applications 8, 89–94 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Area, curve complexity, and crossing resolution of non-planar graph drawings. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 15–20. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) Algorithms and Data Structures. LNCS, vol. 5664, pp. 206–217. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Didimo, W., Eades, P., Liotta, G.: A characterization of complete bipartite graphs. Information Processing Letters 110(16), 687–691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dujmovic, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing graphs. In: 16th Symposium on Computing: the Australasian Theory, pp. 19–24. Australian Computer Society (2010)

    Google Scholar 

  11. Formann, M., Hagerup, T., Haralambides, J., Kaufmann, M., Leighton, F., Symvonis, A., Welzl, E., Woeginger, G.: Drawing graphs in the plane with high resolution. SIAM Journal of Computing 22(5), 1035–1052 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garey, M., Johnson, D.: Crossing number is NP-complete. SIAM Journal of Algebraic Discrete Methods 4, 312–316 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garg, A., Tamassia, R.: Planar drawings and angular resolution: Algorithms and bounds (extended abstract). In: 2nd Annual European Symposium on Algorithms, pp. 12–23 (1994)

    Google Scholar 

  14. Gutwenger, C., Mutzel, P.: Planar polyline drawings with good angular resolution. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Huang, W.: Using eye tracking to investigate graph layout effects. In: Asia-Pacific Symposium on Visualization, pp. 97–100 (2007)

    Google Scholar 

  16. Huang, W., Hong, S.-H., Eades, P.: Effects of crossing angles. In: IEEE Pacific Visualization Symposium, pp. 41–46. IEEE, Los Alamitos (2008)

    Google Scholar 

  17. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  18. van Kreveld, M.: The quality ratio of RAC drawings and planar drawings of planar graphs. In: 18th International Symposium on Graph Drawing (2010) (to appear)

    Google Scholar 

  19. Malitz, S.M., Papakostas, A.: On the angular resolution of planar graphs. In: 24th Annual ACM Symposium on Theory of Computing, pp. 527–538. ACM, New York (1992)

    Google Scholar 

  20. Purchase, H.C., Carrington, D.A., Allder, J.-A.: Empirical evaluation of aesthetics-based graph layout. Empirical Software Engineering 7(3), 233–255 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Argyriou, E.N., Bekos, M.A., Symvonis, A. (2011). The Straight-Line RAC Drawing Problem Is NP-Hard. In: Černá, I., et al. SOFSEM 2011: Theory and Practice of Computer Science. SOFSEM 2011. Lecture Notes in Computer Science, vol 6543. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18381-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18381-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18380-5

  • Online ISBN: 978-3-642-18381-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics