Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On a Relationship between Completely Separating Systems and Antimagic Labeling of Regular Graphs

  • Conference paper
Combinatorial Algorithms (IWOCA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6460))

Included in the following conference series:

  • 738 Accesses

Abstract

A completely separating system (CSS) on a finite set [n] is a collection \(\mathcal C\) of subsets of [n] in which for each pair a ≠ b ∈ [n], there exist \(A, B\in\mathcal C\) such that a ∈ A, b ∉ A and b ∈ B, a ∉ B.

An antimagic labeling of a graph with p vertices and q edges is a bijection from the set of edges to the set of integers {1,2, ..., q} such that all vertex weights are pairwise distinct, where a vertex weight is the sum of labels of all edges incident with the vertex. A graph is antimagic if it has an antimagic labeling.

In this paper we show that there is a relationship between CSSs on a finite set and antimagic labeling of graphs. Using this relationship we prove the antimagicness of various families of regular graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Kaplan, G., Lev, A., Roditty, Y., Yuster, R.: Dense graphs are antimagic. J. Graph Theory 47(4), 297–309 (2004), http://dx.doi.org/10.1002/jgt.20027

    Article  MATH  Google Scholar 

  2. Bača, M., Miller, M.: Super Edge-Antimagic Graphs: a Wealth of Problems and Some Solutions. BrownWalker Press, Boca Raton (2008)

    Google Scholar 

  3. Bloom, G.S., Golomb, S.W.: Applications of numbered undirected graphs. Proc. IEEE 65, 562–570 (1977)

    Article  Google Scholar 

  4. Bloom, G.S., Golomb, S.W.: Numbered complete graphs, unusual rulers, and assorted applications. In: Theory and Applications of Graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976). Lecture Notes in Math., vol. 642, pp. 53–65. Springer, Berlin (1978)

    Google Scholar 

  5. Cheng, Y.: A new class of antimagic Cartesian product graphs. Discrete Math. 308(24), 6441–6448 (2008), http://dx.doi.org/10.1016/j.disc.2007.12.032

    Article  MATH  Google Scholar 

  6. Cranston, D.W.: Regular bipartite graphs are antimagic. J. Graph Theory 60(3), 173–182 (2009), http://dx.doi.org/10.1002/jgt.20347

    Article  MATH  Google Scholar 

  7. Dickson, T.J.: On a problem concerning separating systems of a finite set. J. Combinatorial Theory 7, 191–196 (1969)

    Article  MATH  Google Scholar 

  8. Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Combin. 16(\(\sharp\)DS6) (2009)

    Google Scholar 

  9. Hartsfield, N., Ringel, G.: Pearls in graph theory: a comprehensive introduction. Academic Press Inc., Boston (1990)

    MATH  Google Scholar 

  10. Phanalasy, O., Roberts, I., Rylands, L.: Covering separating systems and an application to search theory. Australas. J. Combin. 45, 3–14 (2009)

    MATH  Google Scholar 

  11. Ramsay, C., Roberts, I.T.: Minimal completely separating systems of sets. Australas. J. Combin. 13, 129–150 (1996)

    MATH  Google Scholar 

  12. Ramsay, C., Roberts, I.T., Ruskey, F.: Completely separating systems of k-sets. Discrete Math. 183(1-3), 265–275 (1998)

    Article  MATH  Google Scholar 

  13. Roberts, I.T.: Extremal Problems and Designs on Finite Sets. Ph.D. thesis, Curtin University of Technology (1999)

    Google Scholar 

  14. Roberts, I., D’Arcy, S., Gilbert, K., Rylands, L., Phanalasy, O.: Separating systems, Sperner systems, search theory. In: Ryan, J., Manyem, P., Sugeng, K., Miller, M. (eds.) Proceedings of the Sixteenth Australasian Workshop on Combinatorial Algorithms, pp. 279–288 (September 2005)

    Google Scholar 

  15. Wang, T.M.: Toroidal grids are anti-magic. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 671–679. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Wang, T.M., Hsiao, C.C.: On anti-magic labeling for graph products. Discrete Math. 308(16), 3624–3633 (2008)

    Article  MATH  Google Scholar 

  17. Zhang, Y., Sun, X.: The antimagicness of the cartesian product of graphs. Theor. Comput. Sci. 410(8-10), 727–735 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Phanalasy, O., Miller, M., Rylands, L., Lieby, P. (2011). On a Relationship between Completely Separating Systems and Antimagic Labeling of Regular Graphs. In: Iliopoulos, C.S., Smyth, W.F. (eds) Combinatorial Algorithms. IWOCA 2010. Lecture Notes in Computer Science, vol 6460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19222-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19222-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19221-0

  • Online ISBN: 978-3-642-19222-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics