Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dense Multi-frame Optic Flow for Non-rigid Objects Using Subspace Constraints

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6495))

Included in the following conference series:

  • 2505 Accesses

Abstract

In this paper we describe a variational approach to computing dense optic flow in the case of non-rigid motion. We optimise a global energy to compute the optic flow between each image in a sequence and a reference frame simultaneously. Our approach is based on subspace constraints which allow to express the optic flow at each pixel in a compact way as a linear combination of a 2D motion basis that can be pre-estimated from a set of reliable 2D tracks. We reformulate the multi-frame optic flow problem as the estimation of the coefficients that multiplied with the known basis will give the displacement vectors for each pixel. We adopt a variational framework in which we optimise a non-linearised global brightness constancy to cope with large displacements and impose homogeneous regularization on the multi-frame motion basis coefficients. Our approach has two strengths. First, the dramatic reduction in the number of variables to be computed (typically one order of magnitude) which has obvious computational advantages and second, the ability to deal with large displacements due to strong deformations. We conduct experiments on various sequences of non-rigid objects which show that our approach provides results comparable to state of the art variational multi-frame optic flow methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartoli, A., Gay-Bellile, V., Castellani, U., Peyras, J., Olsen, S., Sayd, P.: Coarse-to-Fine Low-Rank Structure-from-Motion. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska (2008)

    Google Scholar 

  2. Torresani, L., Hertzmann, A., Bregler, C.: Non-rigid structure-from-motion: Estimating shape and motion with hierarchical priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 30 (2008)

    Google Scholar 

  3. Paladini, M., Del Bue, A., Stosic, M., Dodig, M., Xavier, J., Agapito, L.: Factorization for non-rigid and articulated structure using metric projections. In: IEEE Conference in Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  4. Vedula, S., Baker, S., Rander, P., Collins, R.T., Kanade, T.: Three-dimensional scene flow. In: IEEE International Conference of Computer Vision, pp. 722–729 (1999)

    Google Scholar 

  5. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. International Joint Conference on Artificial Intelligence (1981)

    Google Scholar 

  6. Irani, M.: Multi-frame correspondence estimation using subspace constraints. Int. J. Comput. Vision 48 (2002)

    Google Scholar 

  7. Torresani, L., Yang, D., Alexander, E., Bregler, C.: Tracking and modeling non-rigid objects with rank constraints. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii (2001)

    Google Scholar 

  8. Brand, M.: Morphable models from video. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii, vol. 2 (2001)

    Google Scholar 

  9. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  10. Alvarez, L., Weickert, J., Sánchez, J.: Reliable estimation of dense optical flow fields with large displacements. International Journal of Computer Vision 39, 41–56 (2000)

    Article  MATH  Google Scholar 

  11. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Wedel, A., Pock, T., Braun, J., Franke, U., Cremers, D.: Duality tv-l1 flow with fundamental matrix prior. In: Image and Vision Computing, New Zealand (2008)

    Google Scholar 

  13. Becker, F., Wieneke, B., Yuan, J., Schnörr, C.: A variational approach to adaptive correlation for motion estimation in particle image velocimetry. In: Rigoll, G. (ed.) Pattern Recognition 2008. LNCS, vol. 5096, pp. 335–344. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Wedel, A., Cremers, D., Pock, T., Bischof, H.: Structure- and motion-adaptive regularization for high accuracy optic flow. In: IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan (2009)

    Google Scholar 

  15. Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, South Carolina (2000)

    Google Scholar 

  16. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: A factorization approach. International Journal of Computer Vision 9 (1992)

    Google Scholar 

  17. Torresani, L., Bregler, C.: Space-time tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 801–812. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Shi, J., Tomasi, C.: Good features to track. In: 1994 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 1994 (1994)

    Google Scholar 

  19. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. International Journal of Computer Vision 61, 211–231 (2005)

    Article  Google Scholar 

  20. Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2010) (to appear)

    Google Scholar 

  21. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover, New York (2000)

    MATH  Google Scholar 

  22. Weickert, J., ter Haar Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing 7, 398–410 (1998)

    Article  Google Scholar 

  23. Varol, A., Salzmann, M., Tola, E., Fua, P.: Template-free monocular reconstruction of deformable surfaces. In: ICCV 2009 (2009)

    Google Scholar 

  24. Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. Journal of Mathematical Imaging and Vision 14, 245–255 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garg, R., Pizarro, L., Rueckert, D., Agapito, L. (2011). Dense Multi-frame Optic Flow for Non-rigid Objects Using Subspace Constraints. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19282-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19282-1_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19281-4

  • Online ISBN: 978-3-642-19282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics