Abstract
In this paper we describe a variational approach to computing dense optic flow in the case of non-rigid motion. We optimise a global energy to compute the optic flow between each image in a sequence and a reference frame simultaneously. Our approach is based on subspace constraints which allow to express the optic flow at each pixel in a compact way as a linear combination of a 2D motion basis that can be pre-estimated from a set of reliable 2D tracks. We reformulate the multi-frame optic flow problem as the estimation of the coefficients that multiplied with the known basis will give the displacement vectors for each pixel. We adopt a variational framework in which we optimise a non-linearised global brightness constancy to cope with large displacements and impose homogeneous regularization on the multi-frame motion basis coefficients. Our approach has two strengths. First, the dramatic reduction in the number of variables to be computed (typically one order of magnitude) which has obvious computational advantages and second, the ability to deal with large displacements due to strong deformations. We conduct experiments on various sequences of non-rigid objects which show that our approach provides results comparable to state of the art variational multi-frame optic flow methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bartoli, A., Gay-Bellile, V., Castellani, U., Peyras, J., Olsen, S., Sayd, P.: Coarse-to-Fine Low-Rank Structure-from-Motion. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska (2008)
Torresani, L., Hertzmann, A., Bregler, C.: Non-rigid structure-from-motion: Estimating shape and motion with hierarchical priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 30 (2008)
Paladini, M., Del Bue, A., Stosic, M., Dodig, M., Xavier, J., Agapito, L.: Factorization for non-rigid and articulated structure using metric projections. In: IEEE Conference in Computer Vision and Pattern Recognition (2009)
Vedula, S., Baker, S., Rander, P., Collins, R.T., Kanade, T.: Three-dimensional scene flow. In: IEEE International Conference of Computer Vision, pp. 722–729 (1999)
Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. International Joint Conference on Artificial Intelligence (1981)
Irani, M.: Multi-frame correspondence estimation using subspace constraints. Int. J. Comput. Vision 48 (2002)
Torresani, L., Yang, D., Alexander, E., Bregler, C.: Tracking and modeling non-rigid objects with rank constraints. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii (2001)
Brand, M.: Morphable models from video. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii, vol. 2 (2001)
Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)
Alvarez, L., Weickert, J., Sánchez, J.: Reliable estimation of dense optical flow fields with large displacements. International Journal of Computer Vision 39, 41–56 (2000)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)
Wedel, A., Pock, T., Braun, J., Franke, U., Cremers, D.: Duality tv-l1 flow with fundamental matrix prior. In: Image and Vision Computing, New Zealand (2008)
Becker, F., Wieneke, B., Yuan, J., Schnörr, C.: A variational approach to adaptive correlation for motion estimation in particle image velocimetry. In: Rigoll, G. (ed.) Pattern Recognition 2008. LNCS, vol. 5096, pp. 335–344. Springer, Heidelberg (2008)
Wedel, A., Cremers, D., Pock, T., Bischof, H.: Structure- and motion-adaptive regularization for high accuracy optic flow. In: IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan (2009)
Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, South Carolina (2000)
Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: A factorization approach. International Journal of Computer Vision 9 (1992)
Torresani, L., Bregler, C.: Space-time tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 801–812. Springer, Heidelberg (2002)
Shi, J., Tomasi, C.: Good features to track. In: 1994 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 1994 (1994)
Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. International Journal of Computer Vision 61, 211–231 (2005)
Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in variational motion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2010) (to appear)
Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover, New York (2000)
Weickert, J., ter Haar Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing 7, 398–410 (1998)
Varol, A., Salzmann, M., Tola, E., Fua, P.: Template-free monocular reconstruction of deformable surfaces. In: ICCV 2009 (2009)
Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. Journal of Mathematical Imaging and Vision 14, 245–255 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Garg, R., Pizarro, L., Rueckert, D., Agapito, L. (2011). Dense Multi-frame Optic Flow for Non-rigid Objects Using Subspace Constraints. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19282-1_37
Download citation
DOI: https://doi.org/10.1007/978-3-642-19282-1_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19281-4
Online ISBN: 978-3-642-19282-1
eBook Packages: Computer ScienceComputer Science (R0)