Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Level Set with Embedded Conditional Random Fields and Shape Priors for Segmentation of Overlapping Objects

  • Conference paper
Computer Vision – ACCV 2010 (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6493))

Included in the following conference series:

  • 3942 Accesses

Abstract

Traditional methods for segmenting touching or overlapping objects may lead to the loss of accurate shape information which is a key descriptor in many image analysis applications. While experimental results have shown the effectiveness of using statistical shape priors to overcome such difficulties in a level set based variational framework, problems in estimation of parameters that balance evolution forces from image information and shape priors remain unsolved. In this paper, we extend the work of embedded Conditional Random Fields (CRF) by incorporating shape priors so that accurate estimation of those parameters can be obtained by the supervised training of the discrete CRF. In addition, non-parametric kernel density estimation with adaptive window size is applied as a statistical measure that locally approximates the variation of intensities to address intensity inhomogeneities. The model is tested for the problem of segmenting overlapping nuclei in cytological images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amrikachi, M., Ramzy, I., Rubenfeld, S., Wheeler, T.: Accuracy of fine-needle aspiration of thyroid. Arch. Pathol. Lab. Med. 125, 484–488 (2001)

    Google Scholar 

  2. Li, G., Liu, T., Nie, J., Guo, L., Chen, J., Zhu, J., Xia, W., Mara, A., Holley, S., Wong, S.: Segmentation of touching cell nuclei using gradient flow tracking. Journal of Microscopy 231, 47–58 (2008)

    Article  MathSciNet  Google Scholar 

  3. Fan, X., Bazin, P.L., Prince, J.L.: A multi-compartment segmentation framework with homeomorphic level sets. In: CVPR (2008)

    Google Scholar 

  4. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the mumford and shah model. IJCV 50, 271–293 (2002)

    Article  MATH  Google Scholar 

  5. Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Mosaliganti, K., Gelas, A., Gouaillard, A., Noche, R.: Detection of spatially correlated objects in 3d images using appearance models and coupled active contours. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 641–648. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Cobzas, D., Schmidt, M.: Increased discrimination in level set methods with embedded conditional random fields. In: CVPR (2009)

    Google Scholar 

  8. Levin, A., Weiss, Y.: Learning to combine bottom-up and top-down segmentation. IJCV 81, 105–118 (2009)

    Article  Google Scholar 

  9. Kumar, S., Hebert, M.: Discriminative random fields. IJCV 68, 179–201 (2006)

    Article  Google Scholar 

  10. Li, C., Kao, C.Y., Gore, J.C., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: CVPR (2007)

    Google Scholar 

  11. Mittal, A., Paragios, N.: Motion-based background substraction using adaptive kernel density estimation. In: CVPR (2004)

    Google Scholar 

  12. Cremers, D., Osher, S.J., Soatto, S.: Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. IJCV 69, 335–351 (2006)

    Article  Google Scholar 

  13. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)

    Google Scholar 

  14. Wu, X., Shah, S.: Comparative analysis of cell segmentation using absorption and color images in fine needle aspiration cytology. In: IEEE International Conference on Systems, Man and Cybernetics (2008)

    Google Scholar 

  15. Szummer, M., Kohli, P., Hoiem, D.: Learning cRFs using graph cuts. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 582–595. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Wu, X., Shah, S.: A bottom-up and top-down model for cell segmentation using multispectral data. In: ISBI (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, X., Shah, S.K. (2011). Level Set with Embedded Conditional Random Fields and Shape Priors for Segmentation of Overlapping Objects. In: Kimmel, R., Klette, R., Sugimoto, A. (eds) Computer Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer Science, vol 6493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19309-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19309-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19308-8

  • Online ISBN: 978-3-642-19309-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics