Abstract
Accurate aortic arch quantification is important for diagnosis and treatment of cardiovascular diseases. We introduce a new approach for the quantification of the aortic arch morphology with improved computational efficiency which combines 3D model-based segmentation with intensity-based image registration. The performance of the approach has been evaluated based on 3D synthetic images and clinically relevant 3D CTA images including pathologies. We also performed a quantitative comparison with a previous approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aylward SR, Jomier J, Weeks S, et al. Registration and analysis of vascular images. Int J Computer Vis. 2003;55(2/3):123–38.
Groher M, Zikic D, Navab N. Deformable 2D-3D registration of vascular structures in a one view scenario. IEEE Trans Med Imaging. 2009;28(6):847–60.
Isgum I, Staring M, Rutten A, et al. Multi-atlas-based segmentation with local decision fusion: application to cardiac and aortic segmentation in CT scans. IEEE Trans Med Imaging. 2009;28(7):1000–10.
Yezzi A, Zollei L, Kapur T. A variational framework for joint segmentation and registration. In: Proc IEEE Comput Soc Workshop Math Methods Biomed Image Anal. Kauai, HI/USA; 2001. p. 44–51.
Schmidt-Richberg A, Handels H, Ehrhardt J. Integrated segmentation and nonlinear registration for organ segmentation and motion field estimation in 4D CT data. Methods Inf Med. 2009;48(4):344–49.
Biesdorf A, Rohr K, von Tengg Kobligk H, et al. Combined model-based segmentation and elastic registration for accurate quantification of the aortic arch. Proc MICCAI. 2010; p. 444–51.
Wörz S, Rohr K. Segmentation and quantification of human vessels using a 3D cylindrical intensity model. IEEE Trans Image Process. 2007;16(8):1994–2004.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Biesdorf, A., Rohr, K., von Tengg-Kobligk, H., Wörz, S. (2011). Aortic Arch Quantification using Efficient Joint Segmentation and Registration. In: Handels, H., Ehrhardt, J., Deserno, T., Meinzer, HP., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2011. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19335-4_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-19335-4_58
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19334-7
Online ISBN: 978-3-642-19335-4
eBook Packages: Computer Science and Engineering (German Language)