Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Aortic Arch Quantification using Efficient Joint Segmentation and Registration

  • Chapter
  • First Online:
Bildverarbeitung für die Medizin 2011

Part of the book series: Informatik aktuell ((INFORMAT))

  • 1607 Accesses

Abstract

Accurate aortic arch quantification is important for diagnosis and treatment of cardiovascular diseases. We introduce a new approach for the quantification of the aortic arch morphology with improved computational efficiency which combines 3D model-based segmentation with intensity-based image registration. The performance of the approach has been evaluated based on 3D synthetic images and clinically relevant 3D CTA images including pathologies. We also performed a quantitative comparison with a previous approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aylward SR, Jomier J, Weeks S, et al. Registration and analysis of vascular images. Int J Computer Vis. 2003;55(2/3):123–38.

    Article  Google Scholar 

  2. Groher M, Zikic D, Navab N. Deformable 2D-3D registration of vascular structures in a one view scenario. IEEE Trans Med Imaging. 2009;28(6):847–60.

    Article  Google Scholar 

  3. Isgum I, Staring M, Rutten A, et al. Multi-atlas-based segmentation with local decision fusion: application to cardiac and aortic segmentation in CT scans. IEEE Trans Med Imaging. 2009;28(7):1000–10.

    Article  Google Scholar 

  4. Yezzi A, Zollei L, Kapur T. A variational framework for joint segmentation and registration. In: Proc IEEE Comput Soc Workshop Math Methods Biomed Image Anal. Kauai, HI/USA; 2001. p. 44–51.

    Google Scholar 

  5. Schmidt-Richberg A, Handels H, Ehrhardt J. Integrated segmentation and nonlinear registration for organ segmentation and motion field estimation in 4D CT data. Methods Inf Med. 2009;48(4):344–49.

    Google Scholar 

  6. Biesdorf A, Rohr K, von Tengg Kobligk H, et al. Combined model-based segmentation and elastic registration for accurate quantification of the aortic arch. Proc MICCAI. 2010; p. 444–51.

    Google Scholar 

  7. Wörz S, Rohr K. Segmentation and quantification of human vessels using a 3D cylindrical intensity model. IEEE Trans Image Process. 2007;16(8):1994–2004.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Biesdorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biesdorf, A., Rohr, K., von Tengg-Kobligk, H., Wörz, S. (2011). Aortic Arch Quantification using Efficient Joint Segmentation and Registration. In: Handels, H., Ehrhardt, J., Deserno, T., Meinzer, HP., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2011. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19335-4_58

Download citation

Publish with us

Policies and ethics