Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Floating Visual Grasp of Unknown Objects Using an Elastic Reconstruction Surface

  • Conference paper
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 70))

Abstract

In this paper a new method for fast visual grasp of unknown objects is presented. The method is composed of an object surface reconstruction algorithm and of a local grasp planner, evolving in a parallel way. The reconstruction algorithm makes use of images taken by a camera carried by the robot, mounted in an eye-in-hand configuration.An elastic reconstruction sphere, composed by masses interconnected each other by springs, is virtually placed around the object. The sphere is let to evolve dynamically under the action of external forces, which push the masses towards the object centroid. To smoothen the surface evolution, spatial dampers are attached to each mass. The reconstruction surface shrinks toward its center of mass until some pieces of its surface intercept the object visual hull, and thus local rejection forces are generated to push out the reconstruction points until they stay into the visual hull. This process shapes the sphere around the unknown object. Running in parallel to the reconstruction algorithm, the grasp planner moves the fingertips, floating on the current available reconstructed surface, according to suitable quality measures. The fingers keep moving towards local minima depending on the evolution of the reconstruction surface deformation. The process stops when the object has been completely reconstructed and the planner reaches a local minimum. Quality measures considering both hand and grasp proprieties are adopted. Simulations are presented, showing the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borst, C., Fischer, M., Hirzinger, G.: Calculating hand configurations for precision and pinch graps. In: IEEE/RSJ Confonference on Intelligent Robots and Systems, Lausanne (2002)

    Google Scholar 

  2. Buss, M., Hashimoto, H., Moore, J.B.: Dexterous hand grasping force optimization. IEEE Transaction on Robotics and Automation 12(3), 406–418 (1996)

    Article  Google Scholar 

  3. Chinellato, E., Fisher, R.B., Morales, A., del Pobil, A.P.: Ranking planar grasp configurations for a three-fingered hand. In: IEEE International Conference on Robotics and Automation,Taipei (2003)

    Google Scholar 

  4. Cipolla, R., Blake, A.: Surface shape from the deformation of apparent contours. Internation Journal of Computer Vision 9(2), 83–112 (1992)

    Article  Google Scholar 

  5. Cohen, L.D.: On active contour models and balloons. Computer Vision, Graphics, and Image Processing: Image Understanding 53(2), 211–229 (1991)

    MATH  Google Scholar 

  6. Dyer, C.R.: Volumetric scene reconstruction from multiple views. In: Davis, L.S. (ed.) Foundations of Image Analysis. Kluwer, Boston (2001)

    Google Scholar 

  7. Ferrari, C., Canny, J.: Planning optimal grasps. In: IEEE International Conference on Robotics and Automation,Nice (1992)

    Google Scholar 

  8. Fischer, M., Hirzinger, G.: Fast planning of precision grasps for 3D objects. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Grenoble (1997)

    Google Scholar 

  9. Franco, J.-S., Boyer, E.: Exact polyhedral visual hulls. In: British Machine Vision Conference (2003)

    Google Scholar 

  10. Guan, Y., Zhang, H.: Kinematic feasibility analysis of 3D grasps. In: IEEE International Conference on Robotics and Automation, Seoul (2001)

    Google Scholar 

  11. Hester, R.D., Cetin, M., Kapoor, C., Tesar, D.: A criteria-based approach to grasp synthesis. In: IEEE International Conference on Robotics and Automation, Detroit (1999)

    Google Scholar 

  12. Laurentini, A.: How far 3D shapes can be understood from 2D silhouettes. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(2), 188–195 (1995)

    Article  Google Scholar 

  13. Li, Z., Sastry, S.S.: Task-oriented optimal grasping by multifingered robot hands. IEEE Journal of Robotics and Automation 4(1), 32–44 (1988)

    Article  Google Scholar 

  14. Lippiello, V., Ruggiero, F.: Surface model reconstruction of 3D objects from multiple views. In: IEEE International Conference on Robotics and Automation, Kobe (2009)

    Google Scholar 

  15. Mirtich, B., Canny, J.: Easily computable optimum graps in 2-D and 3-D. In: IEEE International Conference on Robotics and Automation, San Diego (1994)

    Google Scholar 

  16. Perrin, D., Smith, C.E., Masoud, O., Papanikolopoulos, N.P.: Unknown object grasping using statistical pressure models. In: IEEE International Conference on Robotics and Automation, San Francisco (2000)

    Google Scholar 

  17. Platt, R., Fagg, A.H., Grupen, R.A.: Manipulation gaits: sequences of grasp control tasks. In: IEEE International Conference on Robotics and Automation,New Orleans (2004)

    Google Scholar 

  18. Pollard, N.S.: Synthesizing grasps from generalized prototypes. In: IEEE International Conference on Robotics and Automation, Minneapolis (1996)

    Google Scholar 

  19. Prakoonwit, S., Benjamin, R.: 3D surface point and wireframe reconstruction from multiview photographic images. Image and Vision Computing 25, 1509–1518 (2007)

    Article  Google Scholar 

  20. Shimoga, K.B.: Robot grasp synthesis algorithms: A survey. International Journal of Robotics Research 15(3), 230–266 (1996)

    Article  Google Scholar 

  21. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer, London (2009)

    Google Scholar 

  22. Suarez, R., Roa, M., Cornella, J.: Grasp quality measures, Technical Report IOC-DT-P-2006-10, Universitat Politecnica de Catalunya, Institut d’Organitzacio i Control de Sistemes Industrials (2006)

    Google Scholar 

  23. Wren, D., Fisher, R.B.: Dextrous hand grasping strategies using preshapes and digit trajectories. In: IEEE International Conference on Systems, Man and Cybernetics, Vancouver (1995)

    Google Scholar 

  24. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing 7(3) (1998)

    Google Scholar 

  25. Yoshikawa, T., Koeda, M., Fujimoto, H.: Shape recognition and grasping by robotic hands with soft fingers and omnidirectional camera. In: IEEE International Conference on Robotics and Automation, Pasadena (2008)

    Google Scholar 

  26. Yoshimi, B.H., Allen, P.K.: Visual control of grasping and manipulation tasks. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Las Vegas (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lippiello, V., Ruggiero, F., Siciliano, B. (2011). Floating Visual Grasp of Unknown Objects Using an Elastic Reconstruction Surface. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19457-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19457-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19456-6

  • Online ISBN: 978-3-642-19457-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics