Abstract
As CCTV/IP cameras and network infrastructure become cheaper and more affordable, today’s video surveillance solutions are more effective than ever before, providing new surveillance technology that’s applicable to a wide range end-users in retail sectors, schools, homes, office campuses, industrial /transportation systems, and government sectors. Vision-based object detection and tracking, especially for video surveillance applications, is studied from algorithms to performance evaluation. This chapter is composed of three topics: (1) background modeling and detection, (2) performance evaluation of sensitive target detection, and (3) multi-camera segmentation and tracking of people.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Horprasert, T., Harwood, D., Davis, L.S.: A statistical approach for real-time robust background subtraction and shadow detection. In: IEEE Frame-Rate Applications Workshop, Kerkyra, Greece (1999)
Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Int. Conf. Computer Vision and Pattern Recognition, vol. 2, pp. 246–252 (1999)
Harville, M.: A framework for high-level feedback to adaptive, per-pixel, mixture-of-gaussian background models. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 543–560. Springer, Heidelberg (2002)
Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)
Kohonen, T.: Learning vector quantization. Neural Networks 1, 3–16 (1988)
Chalidabhongse, T.H., Kim, K., Harwood, D., Davis, L.: A Perturbation Method for Evaluating Background Subtraction Algorithms. In: Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, VS-PETS (2003)
Scotti, G., Marcenaro, L., Regazzoni, C.: A S.O.M. based algorithm for video surveillance system parameter optimal selection. In: IEEE Conference on Advanced Video and Signal Based Surveillance (2003)
Haritaoglu, I., Harwood, D., Davis, L.S.: W 4: real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 809–830 (2000)
Elgammal, A., Davis, L.S.: Probabilistic Framework for Segmenting People Under Occlusion. In: IEEE International Conference on Computer Vision, Vancouver, Canada, July 9-12 (2001)
Zhao, T., Nevatia, R.: Tracking Multiple Humans in Complex Situations. IEEE Trans. Pattern Analysis Machine Intell. 26(9) (September 2004)
Rabaud, V., Belongie, S.: Counting Crowded Moving Objects. In: IEEE Conf. on Comp. Vis. and Pat. Rec. (2006)
Yang, D., Gonzalez-Banos, H., Guibas, L.: Counting People in Crowds with a Real-Time Network of Image Sensors. In: IEEE ICCV (2003)
Khan, S.M., Shah, M.: A Multiview Approach to Tracking People in Crowded Scenes Using a Planar Homography Constraint. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 133–146. Springer, Heidelberg (2006)
Kang, J., Cohen, I., Medioni, G.: Multi-Views Tracking Within and Across Uncalibrated Camera Streams. In: Proceedings of the ACM SIGMM 2003 Workshop on Video Surveillance (2003)
Javed, O., Rasheed, Z., Shafique, K., Shah, M.: Tracking Across Multiple Cameras With Disjoint Views. In: The Ninth IEEE International Conference on Computer Vision, Nice, France (2003)
Mittal, A., Davis, L.S.: M2Tracker: A Multi-View Approach to Segmenting and Tracking People in a Cluttered Scene. International Journal of Computer Vision 51(3) (February/March 2003)
Eshel, R., Moses, Y.: Homography Based Multiple Camera Detection and Tracking of People in a Dense Crowd. In: Computer Vision and Pattern Recognition, CVPR (2008)
Jin, H., Qian, G., Birchfield, D.: Real-Time Multi-View Object Tracking in Mediated Environments. In: ACM Multimedia Modeling Conference (2008)
Black, J., Ellis, T.: Multi Camera Image Tracking. In: 2nd IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (2001)
Xu, M., Orwell, J., Jones, G.A.: Tracking football players with multiple cameras. In: ICIP 2004 (2004)
Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multi-Camera People Tracking with a Probabilistic Occupancy Map. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 267–282 (2008)
Tsai, R.Y.: An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision. In: IEEE Conference on Computer Vision and Pattern Recognition (1986)
Tu, Z., Zhu, S.-C.: Image segmentation by data-driven Markov chain Monte Carlo. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 657–673 (2002)
Javed, O., Shafique, K., Shah, M.: Appearance Modeling for Tracking in Multiple Non-overlapping Cameras. In: IEEE CVPR 2005, San Diego, June 20-26 (2005)
Senior, A.W.: Tracking with Probabilistic Appearance Models. In: Proceedings ECCV workshop on Performance Evaluation of Tracking and Surveillance Systems, June 1, pp. 48–55 (2002)
Chang, T.H., Gong, S., Ong, E.J.: Tracking Multiple People Under Occlusion Using Multiple Cameras. In: BMVC (2000)
Perez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)
Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11(3), 172–185 (2005)
Hu, M., Lou, J., Hu, W., Tan, T.: Multicamera correspondence based on principal axis of human body. In: International Conference on Image Processing (2004)
Kim, K., Davis, L.S.: Multi-camera tracking and segmentation of occluded people on ground plane using search-guided particle filtering. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 98–109. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kim, K., Davis, L.S. (2011). Object Detection and Tracking for Intelligent Video Surveillance. In: Lin, W., Tao, D., Kacprzyk, J., Li, Z., Izquierdo, E., Wang, H. (eds) Multimedia Analysis, Processing and Communications. Studies in Computational Intelligence, vol 346. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19551-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-19551-8_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-19550-1
Online ISBN: 978-3-642-19551-8
eBook Packages: EngineeringEngineering (R0)