Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Subspace Entropy Maps for Rough Extended Framework

  • Conference paper
Intelligent Information and Database Systems (ACIIDS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6592))

Included in the following conference series:

  • 1441 Accesses

Abstract

Dynamic increase in development of data analysis techniques that has been strengthened and accompanied by recent advances witnessed during widespread development of information systems that depend upon detailed data analysis, require more sophisticated data analysis procedures and algorithms. In the last decades, deeper insight into data structure has been more many innovative data analysis approaches have been devised in order to make possible.

In the paper, in the Rough Extended Framework, SEM - a new family of the rough entropy based image descriptors has been introduced. The introduced rough entropy based image descriptors are created by means of introduced k-Subspace notion. The Subspace Entropy Maps analysis seems to present potentially robust medium during detailed data analysis. The material has been presented by examples of the introduced solutions as image descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Malyszko, D., Stepaniuk, J.: Granular Multilevel Rough Entropy Thresholding in 2D Domain. In: IIS 2008: 16th International Conference Intelligent Information Systems, Zakopane, Poland, June 16-18, pp. 151–160 (2008)

    Google Scholar 

  2. Małyszko, D., Stepaniuk, J.: Standard and Fuzzy Rough Entropy Clustering Algorithms in Image Segmentation. In: Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 409–418. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Malyszko, D., Stepaniuk, J.: Adaptive multilevel rough entropy evolutionary thresholding. Information Sciences 180(7), 1138–1158 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Malyszko, D., Stepaniuk, J.: Adaptive Rough Entropy Clustering Algorithms in Image Segmentation. Fundamenta Informaticae 98(2-3), 199–231 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Malyszko, D., Stepaniuk, J.: Probabilistic Rough Entropy Measures in Image Segmentation. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS, vol. 6086, pp. 40–49. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Pal, S.K., Shankar, B.U., Mitra, P.: Granular computing, rough entropy and object extraction. Pattern Recognition Letters 26(16), 2509–2517 (2005)

    Article  Google Scholar 

  7. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. John Wiley Sons, New York (2008)

    Google Scholar 

  9. Skowron, A., Stepaniuk, J.: Tolerance Approximation Spaces. Fundamenta Informaticae 27(2-3), 245–253 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Stepaniuk, J.: Rough–Granular Computing in Knowledge Discovery and Data Mining. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  11. Slezak, D., Ziarko, W.: The investigation of the Bayesian rough set model. International Journal of Approximate Reasoning 40, 81–91 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Małyszko, D., Stepaniuk, J. (2011). Subspace Entropy Maps for Rough Extended Framework. In: Nguyen, N.T., Kim, CG., Janiak, A. (eds) Intelligent Information and Database Systems. ACIIDS 2011. Lecture Notes in Computer Science(), vol 6592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20042-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20042-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20041-0

  • Online ISBN: 978-3-642-20042-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics