Abstract
A novel real-time local visual feature, namely FAST+LBP, is proposed in this paper for omnidirectional vision. It combines the advantages of two computationally simple operators by using Features from Accelerated Segment Test (FAST) as the feature detector and Local Binary Patterns (LBP) operator as the feature descriptor. The matching experiments of the panoramic images from the COLD database are performed to determine its best parameters, and to evaluate and compare its performance with SIFT. The experimental results show that our algorithm performs better, and features can be extracted in real-time.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of Alvey Vision Conference, pp. 147–151 (1988)
Smith, S.M., Brady, J.M.: SUSAN-a new approach to low level image processing. Int. J. Comput. Vision 23(1), 45–78 (1997)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. In: Proceedings of BMVC, pp. 384–393 (2002)
Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vision 60(1), 63–86 (2004)
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)
Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding 110, 346–359 (2008)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)
Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognition 42, 425–436 (2009)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., et al.: A comparison of affine region detectors. Int. J. Comput. Vision 65(1), 43–72 (2005)
Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vision 37(2), 151–172 (2000)
Li, J., Allinson, N.M.: A comprehensive review of current local features for computer vision. Neurocomputing 71, 1771–1787 (2008)
Grabner, M., Grabner, H., Bischof, H.: Fast approximated SIFT. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3851, pp. 918–927. Springer, Heidelberg (2006)
Tamimi, H., Andreasson, H., Treptow, A., et al.: Localization of Mobile Robots with Omnidirectional Vision using Particle Filter and Iterative SIFT. Robotics and Autonomous Systems 54, 758–765 (2006)
Pronobis, A., Caputo, B.: COLD: The Cosy Localization Database. The International Journal of Robotics Research 28(5), 588–594 (2009)
LBP website, http://www.ee.oulu.fi/mvg/page/lbp_bibliography
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Andreasson, H., Treptow, A., Duckett, T.: Self-Localization in non-stationary environments using omni-directional vision. Robotics and Autonomous Systems 55, 541–551 (2007)
Vedaldi, A.: SIFT source code, http://www.vlfeat.org/~vedaldi/code/sift.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lu, H., Zhang, H., Zheng, Z. (2011). A Novel Real-Time Local Visual Feature for Omnidirectional Vision Based on FAST and LBP. In: Ruiz-del-Solar, J., Chown, E., Plöger, P.G. (eds) RoboCup 2010: Robot Soccer World Cup XIV. RoboCup 2010. Lecture Notes in Computer Science(), vol 6556. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20217-9_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-20217-9_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20216-2
Online ISBN: 978-3-642-20217-9
eBook Packages: Computer ScienceComputer Science (R0)