Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

New Measure of Boolean Factor Analysis Quality

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6593))

Included in the following conference series:

Abstract

Learning of objects from complex patterns is a long-term challenge in philosophy, neuroscience, machine learning, data mining, and in statistics. There are some approaches in literature trying to solve this difficult task consisting in discovering hidden structure of high-dimensional binary data and one of them is Boolean factor analysis. However there is no expert independent measure for evaluating this method in terms of the quality of solutions obtained, when analyzing unknown data. Here we propose information gain, model-based measure of the rate of success of individual methods. This measure presupposes that observed signals arise as Boolean superposition of base signals with noise. For the case whereby a method does not provide parameters necessary for information gain calculation we introduce the procedure for their estimation. Using an extended version of the ”Bars Problem” generation of typical synthetics data for such a task, we show that our measure is sensitive to all types of data model parameters and attains its maximum, when best fit is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barlow, H.B.: Cerebral cortex as model builder. In: Rose, D., Dodson, V.G. (eds.) Models of the Visual Cortex, pp. 37–46. Wiley, Chichester (1985)

    Google Scholar 

  2. Belohlavek, R., Vychodil, V.: On Boolean factor analysis with formal concepts as factors, pp. 20–24 (2006)

    Google Scholar 

  3. Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. Journal of Computer and System Sciences 76(1), 3–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Foldiak, P.: Forming sparse representations by local anti-hebbian learning. Biological Cybernetics 64, 165–170 (1990)

    Article  Google Scholar 

  5. Frolov, A.A., Husek, D., Muraviev, I.P., Polyakov, P.Y.: Boolean factor analysis by attractor neural network. IEEE Transactions on Neural Networks 18(3), 698–707 (2007)

    Article  Google Scholar 

  6. Frolov, A.A., Husek, D., Polyakov, P., Rezankova, H.: New Neural Network Based Approach Helps to Discover Hidden Russian Parliament Voting Patterns. In: IEEE International Joint Conference on Neural Networks, pp. 6518–6523 (2006)

    Google Scholar 

  7. Frolov, A.A., Husek, D., Polyakov, P.Y.: Recurrent neural network based Boolean factor analysis and its application to automatic terms and documents categorization. IEEE Transactions on Neural Networks 20(7), 1073–1086 (2009)

    Article  Google Scholar 

  8. Frolov, A.A., Husek, D., Polyakov, P.Y.: Origin and Elimination of Two Global Spurious Attractors in Hopfield-like Neural Network Performing Boolean Factor Analysis. Neurocomputing (2010) (in press)

    Google Scholar 

  9. Frolov, A.A., Húsek, D., Rezanková, H., Snásel, V., Polyakov, P.: Clustering variables by classical approaches and neural network Boolean factor analysis. In: IEEE International Joint Conference on Neural Networks, pp. 3742–3746 (2008)

    Google Scholar 

  10. Lücke, J., Sahani, M.: Maximal causes for non-linear component extraction. The Journal of Machine Learning Research 9, 1227–1267 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Marr, D.: A Theory for Cerebral Neocortex. Proceedings of the Royal Society of London. Series B, Biological Sciences (1934-1990) 176(1043), 161–234 (1970)

    Article  Google Scholar 

  12. Marr, D.: Simple Memory: A Theory for Archicortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934-1990) 262(841), 23–81 (1971)

    Article  Google Scholar 

  13. Mickey, M.R., Mundle, P., Engelman, L.: Boolean factor analysis. In: Dixon, W. (ed.) BMDP Statistical Software, pp. 538–545. University of California Press, Berkeley (1983)

    Google Scholar 

  14. Pelaez, J.R.: Plato’s theory of ideas revisited. Neural Networks 10(7), 1269–1288 (1997)

    Article  MATH  Google Scholar 

  15. Veiel, H.O.: Psychopathology and Boolean Factor Analysis: a mismatch. Psychol. Med. 15(3), 623–628 (1985)

    Article  Google Scholar 

  16. Weber, A.C., Scharfetter, C.: The syndrome concept: history and statistical operationalizations. Psychol. Med. 14(2), 315–325 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frolov, A.A., Husek, D., Polyakov, P.Y. (2011). New Measure of Boolean Factor Analysis Quality. In: Dobnikar, A., Lotrič, U., Šter, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2011. Lecture Notes in Computer Science, vol 6593. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20282-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20282-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20281-0

  • Online ISBN: 978-3-642-20282-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics