Abstract
Enterprises are migrating towards SOA-based models in order to meet the greater than ever needs for integration and consolidation. Besides, driven by the dissemination of more refined mobile devices in the enterprise, and the rapid growth of wireless networks based on IEEE 802.11 WiFi Standards, mobile applications have been increasingly used in mission-critical business applications. The SOA-based next generation mobility management model analyzed here provides a baseline framework for the successful architecting, deployment and maintenance of mobile applications. We introduce and analyze the requirements to the architecture design needed to comply with new mobility management concept development. We also examine the architecture planning and design issues for the successful implementation of mobility management solutions. Furthermore, we provide a scenario example of the framework for SOA (Service-oriented Architecture) mobile appliances implementation, namely, a model that demonstrates “the customer search” mobile application. Finally, we present a practical case, e.g., a “mobile messaging” application, to show how applying a SOA approach can make the writing of mobile clients using remote services simple and intuitive, which in turn can increase the number of services available on the market, as well as their functionalities and features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baxt, W.G.: Application of Ariticial Neural Networks to Clinical Medicine. Lancet 346, 1135–1138 (1995)
Jang, J.-S.R.: ANFIS: Adaptive Network Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics (1993)
Jang, J.-S.R.: Neuro-fuzzy Modelling and Control. The Proc. of the IEEE (1995)
Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets and systems 28, 15–33 (1988)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. On systems, Man, and Cybernetics 15, 116–132 (1985)
Kovalerchuk, B., Vityaev, E., Ruiz, J.F.: Consistent Knowledge Discovery in Medical; Diagnosis. IEEE Engineering in Medicine and Biology Magazine 19(4), 26–37 (2000)
Wiegerinck, W., Kappen, H., ter Braak, E., Nijman, M., Neijt, J.: Approximate inference for medical diagnosis. Pattern Recognition Letters 20(11-13), 1231–1239 (1999)
Kovalerchuk, B., Vityaev, E., Ruiz, J.F.: Consistent Knowledge Discovery in Medical; Diagnosis. IEEE Engineering in Medicine and Biology Magazine 19(4), 26–37 (2000)
Walter, D., Mohan, C.: ClaDia: a fuzzy classifier system for disease diagnosis. In: Proceedings of the 2000 Congress on Evolutionary Computation, pp. 1429–1435 (2000)
Zahan, S.: A fuzzy approach to computer-assisted myocardial Ischemia diagnosis. Artificial Intelligence in Medicine 21(1-2), 271–275 (2001)
Pena-Reyes, C.A., Sipper, M.: Designing Breast Cancer Diagnostic via a Hybrid Fuzzy-Genetic Methodology. In: Proc. of the 1999 IEEE Int. Fuzzy Systems Conf., pp. 135–139 (1999)
Pattichis, C., Schizas, C., Middleton, L.: Neural Network models in EMG diagnosis. IEEE Trans. On Biomedical Engineering 42(5), 486–496 (1995)
Boulougoura, M., Wadge, E., Kodogiannis, V.S., Chowdrey, H.S.: Intelligent systems for computer-assisted clinical endoscopic image analysis. In: 2nd IASTED Int. Conf. on BIOMEDICAL ENGINEERING, Innsbruck, Austria, pp. 405–408 (2004)
Czogala, E., Leski, J.: Fuzzy and Neuro-fuzzy Intelligent Systems. Springer, Heidelberg (2000)
Rutkowska, D.: Fuzzy Neural Networks with an application to medical diagnosis. BioCybernetics and biomedical Engineering (1-2), 71–78 (1998)
Szczepaniak, P., Lisboa, P., Kacprzyk, J.: Fuzzy Systems in Medicine. Springer, Heidelberg (2000)
Jang, J.S.: ANFIS: Adaptive–network based fuzzy inference systems. IEEE Trans. On Systems, Man, & Cybernetics 23(3), 665–685 (1993)
Sun, R.: Robust reasoning: Integrating rule-based and similarity-based reasoning. Artificial Intelligence 75(2), 214–295 (1995)
Castro, J., Delgado, M.: Fuzzy Systems with Defuzzification are Universal Approximators. IEEE Trans. on systems, Man and Cybernetics 26, 149–152
Vuorimaa, P., Jukarainen, Karpanoja, E.: A neuro-fuzzy system for chemical agent detection. IEEE Trans. On Fuzzy Systems 3(4), 415–424 (1995)
Nanayakkara, T., Watanabe, K., Kiguchi, K., Izumi, K.: Fuzzy Self-Adaptive RBF Neural Network Based Control of a Seven-Link Industrial Robot Manipulator. Advanced Robotics 15(1), 17–43 (2001)
Tontini, G., de Queiroz, A.: RBF Fuzzy-ARTMAP: a new fuzzy neural network for robust on-line learning and identification of patterns. In: Proc. IEEE Int. Conf. on Systems, Man & Cybernetics, vol. 2, pp. 1364–1369 (1996)
Jang, J.-S.R.: Neuro-fuzzy Modelling and Control. The Proc. of the IEEE (1995)
Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets and systems 28, 15–33 (1988)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. On systems, Man, and Cybernetics 15, 116–132 (1985)
Castro, J., Delgado, M.: Fuzzy Systems with Defuzzification are Universal Approximators. IEEE Trans. On systems, Man and Cybernetics 26, 149–152
Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland, D.J., Peckham, P.H., Schalk, G., Donchin, E., Quatrano, L.A., Robinson, C.J., Vaughan, T.M.: Brain-computer interface technology: A review of the first international meeting. IEEE Transactions on Rehabilitation Engineering 8(2), 164–173 (2000)
Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: Automatic seizure detection based on time-frequency analysis and artificial neural networks. Computational Intelligence and Neuroscience 7(3), 1–13 (2007)
Barry, R.J., Clarke, A.R., Johnstone, S.J.: A review of electrophysiology in attention-deficit/hyperactivity disorder:1 Qualitative and quantitive electroencephalography 2. Event-related potentials. Clinical Neurophysiology 114, 171–183, 184–198 (2003)
Kovalerchuk, B., Vityaev, E., Ruiz, J.F.: Consistent Knowledge Discovery in Medical; Diagnosis. IEEE Engineering in Medicine and Biology Magazine 19(4), 26–37 (2000)
Romberg, M.H.: Manual of the Nervous Disease of Man, pp. 395–401. Syndenham Society, London (1853)
Paulus, W.M., Straube, A., Brandt, T.: ‘Visual stabilization of posture: physiological stimulus characteristics and clinical aspects’. Brain 107, 1143–1163 (1984)
Gagey, P., Gentaz, R., Guillamon, J., Bizzo, G., Bodot-Braeard, C., Debruille, Baudry, C.: Normes 1985. Association Française de Posturologie, Paris (1988)
Ronda, J.M., Galvañ, B., Monerris, E., Ballester, F.: Asociación entre Síntomas Clínicos y Resultados de la Posturografía Computerizada Dinámica. Acta Otorrinolaringol. Esp. 53, 252–255 (2002)
Barona, R.: Interés clínico del sistema NedSVE/IBV en el diagnóstico y valoración de las alteraciones del equilibrio. Biomechanics Magazine of the Institute of Biomechanics of Valencia, IBV (February 2003)
Rocchi, L., Chiari, L., Cappello, A.: Feature selection of stabilometric parameters based on principal component analysis. In: Medical & Biological Engineering & Computing 2004, vol. 42 (2004)
Demura, S., Kitabayashi, T.: ‘Power spectrum characteristics of body sway time series and velocity time series of the center of foot pressure during a static upright posture in preschool children’. Sport Sciences for Health 3(1), 27–32 (2008)
Diener, H.C., Dichgans, J., Bacher, M., Gompf, B.: Quantification of postural sway in normals and patients with cerebellar diseases. Electroenc. and Clin. Neurophysiol. 57, 134–142 (1984)
Corradini, M.L., Fioretti, S., Leo, T., Piperno, R.: Early Recognition of Postural Disorders in Multiple Sclerosis Through Movement Analysis: A Modeling study. IEEE Transactions on Biomedical Engineering 44(11) (1997)
Lara, J.A., Moreno, G., Perez, A., Valente, J.P., López-Illescas, A.: Comparing posturographic time series through events detection. In: 21st IEEE International Symposium on Computer-Based Medical Systems, CBMS 2008, June 2008, pp. 293–295 (2008)
Peydro, M.F., Vivas, M.J., Garrido, J.D., Barona, R.: Procedimiento de rehabilitación del control postural mediante el sistema NedSVE/IBV. Biomechanics Magazine of the Institute of Biomechanics of Valencia, IBV (2006)
Dubes, R.C.: Cluster analysis and related issues. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of pattern Recognition & Computer Vision, pp. 3–32. World Scientific Publishing Co., Inc., River Edge
Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning. Springer, Heidelberg (2002)
Jahankhani, P., Revett, K., Kodogiannis, V., Lygouras, J.: Classification Using Adaptive Fuzzy Inference Neural Network. In: Proceedings of the Twelfth IASTED International Conference Artificial Intelligence and Soft Computing (ASC 2008), Palma de Mallorca, Spain, September 1-3 (2008), ISBN 978-0-88986-756-7
Jahankhani, P., Revett, K., Kodogiannis, V.: Data Mining an EEG Dataset With an Emphasis on Dimensionality Reduction. In: IEEE Symposium on Computational Intelligence and Data Mining (CIDM), April 1-5 (2007)
Jahankhani, P., Revett, K., Kodogiannis, V.: EEG Signal Classification Using Wavelet Feature Extraction and Neural Networks. In: IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing, Sofia, Bulgaria, October 3-6, pp. 120–125 (2006)
Jahankhani, P.K., Revett, V.: Automatic Detection of EEG Abnormalities Using Wavelet Transforms. WSEAS Transactions on Signal Processing 1(1), 55–61 (2005) ISSN 1790-5022
Lara, J.A., Jahankhani, P., Pérez, A., Valente, J.P., Kodogianniz, V.: Classification of Stabilometric Time-Series using an Adaptive Fuzzy Inference Neural Network System. In: 10th International conference, ICAISC 2010 Zakopane, Poland, June 2010, pp. 635–643 (2010), ISBN 0302-9743
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kryvinska, N., Strauss, C., Auer, L. (2011). Demand on Computational Intelligence Paradigms Synergy. In: Bessis, N., Xhafa, F. (eds) Next Generation Data Technologies for Collective Computational Intelligence. Studies in Computational Intelligence, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20344-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-20344-2_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20343-5
Online ISBN: 978-3-642-20344-2
eBook Packages: EngineeringEngineering (R0)