Abstract
The main objective of this chapter is to present novel technologies for exploiting multiple layers of intelligence from user-contributed content, which together constitute Collective Intelligence, a form of intelligence that emerges from the collaboration and competition among many individuals, and that seemingly has a mind of its own. User contributed content is analysed by integrating research and development in media analysis, mass content processing, user feedback, social analysis and knowledge management to automatically extract the hidden intelligence and make it accessible to end users and organisations. The exploitation of the emerging Collective Intelligence results is showcased in two distinct case studies: an Emergency Response and a Consumers Social Group case study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)
Multiple Bernoulli relevance models for image and video annotation, vol. 2 (2004), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1315274
Iptc, eventml (2008), http://iptc.org/
Wikipedia in Action: Ontological Knowledge in Text Categorization, doi:10.1109/ICSC 2008.53 (2008)
Aims: Atlas incident management system (2010), http://www.atlasops.com/products/aims.php
Dopplr (2010), http://www.dopplr.com/
Emergency command system (2010), http://www.emergencycommandsystem.com
Fixmystreet (2010), http://www.fixmystreet.com/
ispot, your place to share nature (2010), http://ispot.org.uk/
Mit center for collective intelligence, distributed collaboration project (2010), http://cci.mit.edu/research/collaboration.html
Mobnotes (2010), http://www.mobnotes.com/
Owl 2 web ontology language (2010), http://www.w3.org/TR/owl2-overview/
The protege ontology editor and knowledge acquisition system (2010), http://protege.stanford.edu/
Using geography can help you to meet your flood management responsibilities (2010), http://bit.ly/fc3GQX
Weknowit project deliverable d7.5.1: Consumer and emergency response use case first evaluation report (2010), http://www.weknowit.eu/deliverables
Anderson, A.H.: A comparison of two privacy policy languages: Epal and xacml. In: Proceedings of the 3rd ACM Workshop on Secure Web Services, SWS 2006, pp. 53–60. ACM, New York (2006), doi:http://doi.acm.org/10.1145/1180367.1180378
Avrithis, Y., Kalantidis, Y., Tolias, G., Spyrou, E.: Retrieving landmark and non-landmark images from community photo collections. In: Proceedings of the International Conference on Multimedia, MM 2010, pp. 153–162. ACM, New York (2010), doi:10.1145/1873951.1873973
Begelman, G., Keller, P., Smadja, F.: Automated Tag Clustering: Improving search and exploration in the tag space (2006), http://www.pui.ch/phred/automated_tag_clustering/
Bloehdorn, S., Hotho, A.: Text classification by boosting weak learners based on terms and concepts. In: Proceedings of the Fourth IEEE International Conference on Data Mining, ICDM 2004, pp. 331–334. IEEE Computer Society, Washington, DC, USA (2004)
Brooks, C.H., Montanez, N.: Improved annotation of the blogosphere via autotagging and hierarchical clustering. In: Proceedings of the 15th International Conference on World Wide Web, WWW 2006, pp. 625–632. ACM, New York (2006), doi:http://doi.acm.org/10.1145/1135777.1135869
Chang, E., Goh, K., Sychay, G., Wu, G.: Cbsa: Content-based soft annotation for multimodal image retrieval using bayes point machines. IEEE Transactions on Circuits and Systems for Video Technology 13, 26–38 (2003)
Chum, O., Philbin, J., Zisserman, A.: Near Duplicate Image Detection: min-Hash and tf-idf Weighting. In ACM British Machine Vision Conference 2, 1
Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks (2004), doi:10.1103/PhysRevE.70.066111
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)
Doerr, M., Ore, C.E., Stead, S.: The cidoc conceptual reference model: a new standard for knowledge sharing. In: Tutorials, Posters, Panels and Industrial Contributions at the 26th International Conference on Conceptual Modeling. ER 2007, vol. 83, pp. 51–56. Australian Computer Society, Inc, Darlinghurst (2007)
Ekin, A., Tekalp, A.M., Mehrotra, R.: Integrated semantic-syntactic video modeling for search and browsing. IEEE Transactions on Multimedia 6, 839 (2004)
Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-Based Access Control. Artech House, Inc., Norwood (2003)
Fischler, M.A., Bolles, R.C.: Chap. Random Sample Consensus: a Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. In: Readings in computer vision: issues, problems, principles, and paradigms, pp. 726–740. Morgan Kaufmann Publishers Inc, San Francisco (1987)
Francois, A.R., Nevatia, R., Hobbs, J., Bolles, R.C.: Verl: An ontology framework for representing and annotating video events. IEEE Multimedia 12, 76–86 (2005), doi:http://doi.ieeecomputersociety.org/10.1109/MMUL.2005.87
Franke, M., Geyer-Schulz, A.: An update algorithm for restricted random walk clustering for dynamic data sets. Advances in Data Analysis and Classification 3(1), 63–92 (2009)
Gabrilovich, E., Markovitch, S.: Overcoming the brittleness bottleneck using wikipedia: enhancing text categorization with encyclopedic knowledge. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 2, pp. 1301–1306. AAAI Press, Menlo Park (2006)
Geyer-Schulz, A., Ovelgoenne, M., Sonnenbichler, A.: Getting Help In A Crowd - A Social Emergency Alert Service. In: International Conference on e-Business 2010 (ICETE ICE-B), Athens, Greece, pp. 207–218 (2010)
Geyer-Schulz, A., Thede, A.: Implementation of hierarchical authorization for a web based digital library. In: 3rd International Conference on Cybernetics and Information Technologies, Systems, and Applications, pp. 139–144 (2006)
Giannakidou, E., Koutsonikola, V., Vakali, A., Kompatsiaris, Y.: Co-clustering tags and social data sources. In: The Ninth International Conference on Web-Age Information Management WAIM 2008, pp. 317–324 (2008), doi:10.1109/WAIM.2008.61
Girardin, F., Calabrese, F., Fiore, F.D., Ratti, C., Blat, J.: Digital footprinting: Uncovering tourists with user-generated content. IEEE Pervasive Computing 7, 36–43 (2008), doi:10.1109/MPRV.2008.71
Grauman, K.: Pyramid match hashing: Sub-linear time indexing over partial correspondences. In: CVPR (2007)
Hollenstein, L., Purves, R.: Exploring place through user-generated content: Using Flickr to describe city cores. Journal of Spatial Information Science 1(1), 21–48 (2010)
Janik, M., Kochut, K.: Training-less Ontology-based Text Categorization. In: Workshop on Exploiting Semantic Annotations in Information Retrieval (ESAIR 2008) at the 30th European Conference on Information Retrieval, ECIR 2008 (2008)
Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-88682-2_24
Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-media relevance models (2003)
Kalantidis, Y., Tolias, G., Avrithis, Y., Phinikettos, M., Spyrou, E., Mylonas, P., Kollias, S.: Viral: Visual image retrieval and localization. Multimedia Tools and Applications, 1–38 (2010), doi:10.1007/s11042-010-0651-7
Kalantidis, Y., Tolias, G., Spyrou, E., Mylonas, P., Avrithis, Y.: Visual image retrieval and localization. In: 7th International Workshop on Content-Based Multimedia Indexing, Greece (2009)
Kemp, C., Shafto, P., Berke, A., Tenenbaum, J.B.: Combining causal and similarity-based reasoning. nips (2006)
Kennedy, L., Naaman, M., Ahern, S., Nair, R., Rattenbury, T.: How flickr helps us make sense of the world: context and content in community-contributed media collections. In: Proceedings of the 15th International Conference on Multimedia, MULTIMEDIA 2007, pp. 631–640. ACM, New York (2007), doi:http://doi.acm.org/10.1145/1291233.1291384
Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999), doi:http://doi.acm.org/10.1145/324133.324140
Lewis, D.: Naive (bayes) at forty: The independence assumption in information retrieval. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 4–15. Springer, Heidelberg (1998), doi:10.1007/BFb0026666
Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)
Li, J., Wang, J.Z.: Automatic linguistic indexing of pictures by a statistical modeling approach. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1075–1088 (2003), doi:10.1109/TPAMI.2003.1227984
Liu, D., Hua, X.S., Wang, M., Zhang, H.J.: Retagging social images based on visual and semantic consistency. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 1149–1150. ACM, New York (2010), doi:http://doi.acm.org/10.1145/1772690.1772848
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004), doi:10.1023/B:VISI.0000029664.99615.94
Luo, F., Wang, J.Z., Promislow, E.: Exploring local community structures in large networks. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2006, pp. 233–239. IEEE Computer Society, Washington, DC,USA (2006), doi:http://dx.doi.org/10.1109/WI.2006.72
MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Le Cam, L.M., Neyman, J. (eds.) Proc. of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)
Malone, T.W., Klein, M.: Harnessing collective intelligence to address global climate change. Innovations: Technology, Governance, Globalization 2(3), 15–26 (2007), doi:10.1162/itgg.2007.2.3.15
Mccallum, A.K.: BOW: A toolkit for statistical language modeling, text retrieval, classification and clustering (1996), http://www.cs.cmu.edu/~mccallum/bow/
Mika, P.: Ontologies are us: A unified model of social networks and semantics. In: International Semantic Web Conference, pp. 522–536 (2005)
Mueller, E.T.: Chapter 17 event calculus. In: van Harmelen, V.L.F., Porter, B. (eds.) Handbook of Knowledge Representation. Foundations of Artificial Intelligence, vol. 3, pp. 671–708. Elsevier, Amsterdam (2008), doi:10.1016/S1574-6526(07)03017-9
Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. EÂ 69(2), 026,113 (2004), doi:10.1103/PhysRevE.69.026113
Niste’r, D., Stewe’nius, H.: Scalable recognition with a vocabulary tree. In: CVPR, pp. 2161–2168 (2006)
Ovelgoenne, M., Geyer-Schulz, A., Stein, M.: A randomized greedy modularity clustering algorithm for community detection in huge social networks. In: 4th International Workshop on Social Network Analysis and Mining (SNA-KDD 2010), Washington, DC, USA (2010)
Ovelgoenne, M., Sonnenbichler, A.C., Geyer-Schulz, A.: Social emergency alert service - a location-based privacy-aware personal safety service. In: Proceedings of the 2010 Fourth International Conference on Next Generation Mobile Applications, Services and Technologies, NGMAST 2010, pp. 84–89. IEEE Computer Society, Washington, DC, USA (2010), doi:http://dx.doi.org/10.1109/NGMAST.2010.27
Papadopoulos, S., Kompatsiaris, Y., Vakali, A.: A graph-based clustering scheme for identifying related tags in folksonomies. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M. (eds.) DAWAK 2010. LNCS, vol. 6263, pp. 65–76. Springer, Heidelberg (2010)
Papadopoulos, S., Vakali, A., Kompatsiaris, Y.: Community detection in collaborative tagging systems. In: Pardede, E. (ed.) Community-built Database: Research and Development. Springer, Heidelberg (2010)
Papadopoulos, S., Zigkolis, C., Tolias, G., Kalantidis, Y., Mylonas, P., Kompatsiaris, Y., Vakali, A.: Image clustering through community detection on hybrid image similarity graphs. In: 2010 International Conference on Image Processing (ICIP 2010), Hong-Kong, September 26-29 (2010)
Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)
Prelec, D.: A Bayesian Truth Serum for Subjective Data. Science 306(5695), 462–466 (2004), doi:10.1126/science.1102081
Quack, T., Leibe, B., Van Gool, L.: World-scale mining of objects and events from community photo collections. In: Proceedings of the 2008 International Conference on Content-based Image and Video Retrieval, CIVR 2008, pp. 47–56. ACM, New York (2008), doi:http://doi.acm.org/10.1145/1386352.1386363
Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Physical Review EÂ 76(3), 036,106 (2007), doi:10.1103/PhysRevE.76.036106
Raimond, Y., Abdallah, S.: The event ontology (October 2007), http://motools.sf.net/event
Rissanen, E.: Extensible access control markup language (xacml) version 3.0 committee draft 03 (2010), http://docs.oasis-open.org/xacml/3.0/ xacml-3.0-core-spec-cd-03-en.pdf
Saathoff, C., Scherp, A.: Unlocking the semantics of multimedia presentations in the web with the multimedia metadata ontology. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 831–840. ACM, New York (2010), doi:http://doi.acm.org/10.1145/1772690.1772775
Sandhu, R.S., Samarati, P.: Access control: Principles and practice. IEEE Communications Magazine 32, 40–48 (1994)
Schenk, S., Saathoff, C., Staab, S., Scherp, A.: Semaplorer-interactive semantic exploration of data and media based on a federated cloud infrastructure. Web Semant. 7, 298–304 (2009), doi:10.1016/j.websem.2009.09.006
Scherp, A., Franz, T., Saathoff, C., Staab, S.: F–a model of events based on the foundational ontology dolce+dns ultralight. In: Proceedings of the Fifth International Conference on Knowledge Capture, K-CAP 2009, pp. 137–144. ACM, New York (2009), doi:http://doi.acm.org/10.1145/1597735.1597760
Sikkel, K.: A group-based authorization model for cooperative systems. In: Proceedings of the Fifth Conference on European Conference on Computer-Supported Cooperative Work, pp. 345–360. Kluwer Academic Publishers, Norwell (1997)
Sivic, J., Zisserman, A.: Video Google: A Text Retrieval Approach to Object Matching in Videos. In: IEEE International Conference on Computer Vision, vol. 2, pp. 1470–1477 (2003), doi:10.1109/ICCV.2003.1238663
Torres, L.H.: Citizen sourcing in the public interest. Knowledge Management for Development Journal 3(1), 134–145 (2007)
Vapnik, V.N.: The nature of statistical learning theory. Springer-Verlag New York, Inc., New York (1995)
C. Wang, F. Jing, L. Zhang, H.-J. Zhang: Content-based image annotation refinement. In: CVPR (2007)
Wang, X.j., Mamadgi, S., Thekdi, A., Kelliher, A., Sundaram, H.: Eventory – an event based media repository. In: Proceedings of the International Conference on Semantic Computing, pp. 95–104. IEEE Computer Society, Washington, DC, USA (2007), doi:10.1109/ICSC.2007.33
Westermann, U., Jain, R.: Toward a common event model for multimedia applications. IEEE MultiMedia 14, 19–29 (2007), doi:10.1109/MMUL.2007.23
Winerman, L.: Social networking: Crisis communication. Nature 457(7228), 376 (2009), doi:10.1038/457376a
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, San Francisco (2005), http://bit.ly/ihBvSG
Wolfson, H.J., Rigoutsos, I.: Geometric hashing: an overview. IEEE Computational Science and Engineering 4(4), 10–21 (1997), doi:10.1109/99.641604
Work, D.B., Blandin, S., Tossavainen, O.P., Piccoli, B., Bayen, A.M.: A Traffic Model for Velocity Data Assimilation. Applied Mathematics Research Express 2010(1), 1–35 (2010), doi:10.1093/amrx/abq002
Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: Scan: a structural clustering algorithm for networks. In: KDD 2007: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 824–833. ACM, New York (2007)
Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. Advances in Neural Information Processing Systems 16 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Diplaris, S. et al. (2011). Emerging, Collective Intelligence for Personal, Organisational and Social Use. In: Bessis, N., Xhafa, F. (eds) Next Generation Data Technologies for Collective Computational Intelligence. Studies in Computational Intelligence, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20344-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-20344-2_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20343-5
Online ISBN: 978-3-642-20344-2
eBook Packages: EngineeringEngineering (R0)