Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

This book chapter is a review of mobile sensing technologies and computational methods for collective intelligence. We discuss the application of mobile sensing to understand collective mechanisms and phenomena in face-to-face networks at three different scales: organizations, communities and societies. We present an overview of the state-of-the art in individual behavior recognition from sensor data. We discuss related work on group behavior recognition such as face-to-face interaction, social signaling, conversation detection, and conversation dynamics. We also present a brief overview of pattern recognition methods in social network analysis for the automatic identification of groups and the study of social network evolution. We describe a sensor-based organizational design and engineering system for computational collective intelligence applications in organizations. We also provide two example applications of collective intelligence and modeling user behavior at the community scale. Finally, we investigate the impact that these new sensing technologies may have on the understanding of societies, and how these insights can assist in the design of smarter cities and countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdelzaher, T., Anokwa, Y., Boda, P., et al.: Mobiscopes for Human Spaces. IEEE Pervasive Computing, 20–29 (2007)

    Google Scholar 

  • Avancha, S., Baxi, A., Kotz, D.: Privacy in mobile technology for personal healthcare. ACM Computing Surveys (2009)

    Google Scholar 

  • Aaron, C., Moore, C., Newman, M.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98–101 (2008)

    Article  Google Scholar 

  • Arbesman, S., Kleinberg, J., Strogatz, S.: Superlinear scaling for innovation in cities. Physical Review E 79(1), 16115 (2009)

    Google Scholar 

  • Bagrow, J.P., Bollt, E.M.: Local method for detecting communities. Phys. Rev. E. 046108 (2005)

    Google Scholar 

  • Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Proceedings of the 2nd International Conference on Pervasive Computing, pp. 1–17 (2004)

    Google Scholar 

  • Bettencourt, L., Lobo, J., Helbing, D., Kuhnert, C., West, G.: In: Proceedings of the National Academy of Sciences, vol. 104, p. 7301 (2007)

    Google Scholar 

  • Bernard, H.R., Killworth, P., Kronenfeld, D., Sailer, L.: The Problem of Informant Accuracy: The Validity of Retrospective Data. Annual Review of Anthropology 13, 495–517 (1984)

    Article  Google Scholar 

  • Cebrian, M., Lahiri, M., Oliver, N., Pentland, A.: Measuring the Collective Potential of Populations From Dynamic Social Interaction Data. IEEE Journal of Selected Topics in Signal Processing 4(4), 667–686 (2010)

    Article  Google Scholar 

  • Lahiri, M., Cebrian, M.: The genetic algorithm as a general diffusion model for social networks. In: Proceedings of the AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  • Choudhury, T., Pentland, A.: Sensing and Modeling Human Networks Using the Sociometer. In: 7th International Symposium on Wearable Computers, October 21-23 (2003)

    Google Scholar 

  • Chung, P.-C., Liua, C.-D.: A daily behavior enabled hidden Markov model for human behavior understanding. Pattern Recognition, 1572–1580 (2007)

    Google Scholar 

  • Ciccone, A., Hall, R.: Productivity and the density of economic activity. The American Economic Review 86, 54–70 (1996)

    Google Scholar 

  • Ciccone, A.: Agglomeration effects in Europe. European Economic Review 46(2), 213–227 (2002)

    Article  Google Scholar 

  • DeVaul, R.W., Dunn, S.: Real-Time Motion Classification for Wearable Computing Applications. Technical Report. MIT Media Laboratory (2001)

    Google Scholar 

  • Dong, W., Pentland, A.: Modeling Influence Between Experts. In: Huang, T.S., Nijholt, A., Pantic, M., Pentland, A. (eds.) ICMI/IJCAI Workshops 2007. LNCS (LNAI), vol. 4451, pp. 170–189. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  • Eagle, N., Pentland, A., Lazer, D.: Inferring Social Network Structure Using Mobile Phone Data. In: Proceedings of NAS, vol. 106, pp. 15274–15278 (2009)

    Google Scholar 

  • Gonzalez, M., Hidalgo, C., Barabasi, A.-L.: Understanding Human Mobility Patterns. Nature 453, 779–982 (2008)

    Article  Google Scholar 

  • Foltz, P.W., Martin, M.J.: Automated Communication Analysis of Teams. In: Salas, E., Goodwin, G.F., Burke, S. (eds.) Team Effectiveness in Complex Organizations, pp. 411–431. Taylor & Francis Group, New York (2009)

    Google Scholar 

  • Gatica-Perez, D.: Analyzing group interactions in conversations: a review. In: Proceedings of the International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 41–46. IEEE, Los Alamitos (2006)

    Chapter  Google Scholar 

  • Gatica-Perez, D.: Automatic nonverbal analysis of social interaction in small groups: A review. Image and Vision Computing (2009)

    Google Scholar 

  • Girvan, M., Newman, M.E.: Community structure in social and biological networks. In: PNAS, pp. 7821–7826 (2002)

    Google Scholar 

  • Glaeser, E., Kallal, H., Scheinkman, J., Shleifer, A.: Growth in Cities. Journal of Political Economy 100, 1126–1152 (1992)

    Article  Google Scholar 

  • Goldenberg, A.: Scalable Graphical Models for Social Networks. PhD Thesis. Pittsburgh, PA, USA: Carnegie Mellon University (2007)

    Google Scholar 

  • Granovetter, M.: The strength of weak ties. American Journal of Sociology 78, 1360–1380 (1973)

    Article  Google Scholar 

  • Handcock, M., Raftery, A., Tantrum, J.: Model-based clustering for social networks. Journal of the Royal Statistical Society: Series A (Statistics in Society) 170(2), 301–354 (2007)

    MathSciNet  Google Scholar 

  • Heylighen, F.: Collective Intelligence and its Implementation on the Web: algorithms to develop a collective mental map. Computational and Mathematical Organization Theory 5(3), 253–280 (1999)

    Article  MATH  Google Scholar 

  • Hinds, P.: Distributed Work. MIT Press, Cambridge (2002)

    Google Scholar 

  • Jacobs, J.: The economy of cities. Vintage Books (1969)

    Google Scholar 

  • Jacobs, J.: Cities and the wealth of nations: Principles of economic life. Random House (1984)

    Google Scholar 

  • Kern, N., Schiele, B.: Context-Aware Notification for Wearable Computing. In: Proceedings of the 7th International Symposium on Wearable Computing, pp. 223–230 (2003)

    Chapter  Google Scholar 

  • Kossinets, G., Watts, D.J.: Empirical Analysis of Evolving Social Networks. Science, 88–90 (2006)

    Google Scholar 

  • Bramoullé, Y., Kranton, R.: Public Goods in Networks. Journal of Economic Theory 135(1), 478–494 (2007)

    Article  MATH  Google Scholar 

  • Lahiri, M., Cebrian, M.: The genetic algorithm as a general diffusion model for social networks. In: Proc. of the 24th AAAI Conference on Artificial Intelligence, Atlanta, Georgia (2010)

    Google Scholar 

  • Lazer, D., Friedman, A.: The Network Structure of Exploration and Exploitation. Administrative Science Quarterly 52(4), 667–694 (2007)

    Article  Google Scholar 

  • Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D., et al.: Computational Social Science. Science 323, 721–723 (2009)

    Article  Google Scholar 

  • Lee, S.W., Mase, K.: Activity and Location Recognition Using Wearable Sensors. In: Pervasive Computing, pp. 24–32 (2002)

    Google Scholar 

  • Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, p. 187 (2005)

    Google Scholar 

  • Leskovec, J., Adamic, L., Huberman, B.: The dynamics of viral marketing. ACM Transactions on the Web, 1–1 (2007)

    Google Scholar 

  • Lester, J., Choudhury, T., Borriello, G.: A practical approach to recognizing physical activities. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 1–16. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Liao, L., Choudhury, T., Fox, D., Kautz, H.: Training Conditional Random Fields Using Virtual Evidence Boosting. In: Proceedings of the International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 1–6 (2007)

    Google Scholar 

  • Macy, M., Eagle, N., Claxton, R.: Network Diversity and Economic Development. Science 328(5981), 1029 (2010)

    Article  MathSciNet  Google Scholar 

  • Madan, A., Pentland, A.: Modeling Social Diffusion Phenomena Using Reality Mining. In: AAAI Spring Symposium on Human Behavior Modeling, Stanford University, CA (2009)

    Google Scholar 

  • Madan, A., Pentland, A.: Social Sensing of Political Opinions (2010) (in submission)

    Google Scholar 

  • McCallum, A., Wang, X., Corrada-Emmanuel, A.: Topic and Role Discovery in Social Networks with Experiments on Enron and Academic Email. Journal of Artificial Intelligence Research 30, 249–272 (2007)

    Google Scholar 

  • Mantyjarvi, J., Himberg, J., Seppanen, T., Center, N.: Recognizing human motion with multiple acceleration sensors. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 747–752 (2001)

    Google Scholar 

  • Mishra, N., Schreiber, R., Stanton, I., Tarjan, R.E.: Clustering social networks. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 56–67. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  • Olguin-Olguin, D.: Sociometric Badges: Wearable Technology for Measuring Human Behavior. Master’s Thesis. Cambridge, MA, USA: Massachusetts Institute of Technology (2007)

    Google Scholar 

  • Olguin-Olguin, D., Gloor, P.A., Pentland, A.: Wearable Sensors for Pervasive Healthcare Management. In: 3rd International Conference on Pervasive Computing Technologies for Healthcare, London, UK, April 1-3, pp. 1–4 (2009a)

    Google Scholar 

  • Olguin-Olguin, D., Waber, B., Kim, T., Mohan, A., Ara, K., Pentland, A.: Sensible Organizations: Technology and Methodology for Automatically Measuring Organizational Behavior. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 39(1), 43–55 (2009b)

    Article  Google Scholar 

  • Olguin-Olguin, D., Pentland, A.: Sensor-Based Organisational Design and Engineering. To appear in: International Journal of Organisational Design and Engineering (2010)

    Google Scholar 

  • Oliver, N., Horvitz, E.: A Comparison of HMMs and Dynamic Bayesian Networks for Recognizing Office Activities. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 199–209. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Oliver, N., Garg, A., Horvitz, E.: Layered representations for learning and inferring office activity from multiple sensory channels. Computer Vision and Image Segmentation 96, 163–180 (2004)

    Article  Google Scholar 

  • Palla, G., Barabasi, A.L., Vicsek, T.: Quantifying social group evolution. Nature, 664–667 (2007)

    Google Scholar 

  • Pentland, A.: Automatic Mapping and Modeling of Human Networks. Physica A: Statistical Mechanics and its Applications 378(1), 59–67 (2006)

    Article  Google Scholar 

  • Pentland, A.: Honest Signals: How they Shape our World. The MIT Press, Cambridge (2008)

    Google Scholar 

  • Ravasz, E., Barabasi, A.: Physical Review E 67, 26112 (2003)

    Google Scholar 

  • Robins, G., Snijders, T., Wang, P., Handcock, M., Pattison, P.: Recent developments in exponential random graph (p*) models for social networks. Social Networks 29(2), 192–215 (2007)

    Article  Google Scholar 

  • Salganik, M., Dodds, P., Watts, D.: Experimental Study of Inequality and Unpredictability in an Artificial Cultural Market. Science 311 (2006)

    Google Scholar 

  • Scarlat, E., Maries, I.: Towards an Increase of Collective Intelligence within Organizations Using Trust and Reputation Models. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS (LNAI), vol. 5796, pp. 140–151. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  • Slaughter, A.J., Yu, J., Koehly, L.M.: Social Network Analysis: Understanding the Role of Context in Small Groups and Organizations. In: Salas, E., Goodwin, G.F., Burke, S. (eds.) Team Effectiveness in Complex Organizations, pp. 433–459. Taylor & Francis Group LLC, Abington (2009)

    Google Scholar 

  • Sukthankar, G., Sycara, K.: A cost minimization approach to human behavior recognition. In: Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems, The Netherlands, pp. 1067–1074 (2005)

    Chapter  Google Scholar 

  • Van Laerhoven, K., Cakmakci, O.: What shall we teach our pants? In: Proceedings of the 4th International Symposium on Wearable Computers, pp. 77–83 (2000)

    Google Scholar 

  • Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, London (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Olguín, D.O., Madan, A., Cebrian, M., Pentland, A.(. (2011). Mobile Sensing Technologies and Computational Methods for Collective Intelligence. In: Bessis, N., Xhafa, F. (eds) Next Generation Data Technologies for Collective Computational Intelligence. Studies in Computational Intelligence, vol 352. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20344-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20344-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20343-5

  • Online ISBN: 978-3-642-20344-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics