Abstract
Rapidly advancing technology has allowed for the generation of massive amounts data assessing variation across the human genome. One analysis method for this type of data is the genome-wide association study (GWAS) where each variation is assessed individually for association to disease. While these studies have elucidated novel etiology, much of the variation due to genetics remains unexplained. One hypothesis is that some of the variation lies in gene-gene interactions. An impediment to testing for interactions is the infeasibility of exhaustively searching all multi-locus models. Novel methods are being developed that perform a non-exhaustive search. Because these methods are new to genetic studies, rigorous parameter optimization is necessary. Here, we assess genotype encodings, function sets, and cross-over in two algorithms which use grammatical evolution to optimize neural networks or symbolic regression formulas in the ATHENA software package. Our results show that the effect of these parameters is highly dependent on the underlying disease model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hindorff, L.A., Sethupathy, P., Junkins, H.A., et al.: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. U.S.A 106(23), 9362–9367 (2009)
Nicolae, D.L., Gamazon, E., Zhang, W., et al.: Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 6(4), e1000888 (2010)
Manolio, T.A., Collins, F.S., Cox, N.J., et al.: Finding the missing heritability of complex diseases. Nature 461(7265), 747–753 (2009)
Maher, B.: Personal genomes: The case of the missing heritability. Nature 456(7218), 18–21 (2008)
Motsinger, A.A., Ritchie, M.D., Reif, D.M.: Novel methods for detecting epistasis in pharmacogenomics studies. Pharmacogenomics 8(9), 1229–1241 (2007)
Bateson, W.: Mendel’s Principles of Heredity. Cambridge University Press, Cambridge (1909)
Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proc 6th Intl.Congress of Genetics, vol. 1, pp. 356–366 (1932)
Moore, J.H.: The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum. Hered. 56(1-3), 73–82 (2003)
Moore, J.H., Barney, N., Tsai, C.T., et al.: Symbolic modeling of epistasis. Hum. Hered. 63(2), 120–133 (2007)
Bishop, C.M.: Neural Networks for Pattern Recognition, pp. 1–482. Oxford University Press, London (1995)
Krogh, A.: What are artificial neural networks? Nat. Biotechnol. 26(2), 195–197 (2008)
Koza, J.R., Rice, J.P.: Genetic generation of both the weights and architecture for a neural network. IEEE Transactions II (1991)
Ritchie, M.D., White, B.C., Parker, J.S., et al.: Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases. BMC Bioinformatics 4(1), 28 (2003)
Koza, J.: Genetic Programmming: On the Programming of Computers by Means of Natural Selection, pp. 1–819. MIT Press, Cambridge (1992)
Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)
Moore, J.H., Parker, J.S., Olsen, N.J., et al.: Symbolic discriminant analysis of microarray data in autoimmune disease. Genet. Epidemiol. 23, 57–69 (2002)
Motsinger-Reif, A.A., Dudek, S.M., Hahn, L.W., et al.: Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology. Genetic Epidemiology 32(4), 325–340 (2008)
O’Neill, M., Ryan, C.: Grammatical Evolution. IEEE Transactions on Evolutionary Computation 5(4) (2001)
Holzinger, E.R., Buchanan, C.C., Dudek, S.M., et al.: Initialization Parameter Sweep in ATHENA: Optimizing Neural Networks for Detecting Gene-Gene Interactions in the Presence of Small Main Effects. In: Genet. Evol. Comput. Conf., pp. 203–210 (2010)
Reif, D.M., White, B.C., Olsen, N.J., et al.: Complex function sets improve symbolic discriminant analysis of microarray data. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724. Springer, Heidelberg (2003)
Dudek, S.M., Motsinger, A.A., Velez, D.R., et al.: Data simulation software for whole-genome association and other studies in human genetics. In: Pac. Symp. Biocomput., vol. 11, pp. 499–510 (2006)
Edwards, T.L., Bush, W.S., Turner, S.D., et al.: Generating Linkage Disequilibrium Patterns in Data Simulations Using genomeSIMLA, LNCS, vol. 4793. pp. 24–35 (2008)
Ott, J.: Neural networks and disease association studies. American Journal of Medical Genetics (Neuropsychiatric Genetics)Â 105(60), 61 (2001)
O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language, First. Kluwer Academic Publishers, Norwell (2003)
Turner, S.D., Dudek, S.M., Ritchie, M.D.: Grammatical Evolution of Neural Networks for Discovering Epistasis among Quantitative Trait Loci. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2010. LNCS, vol. 6023, pp. 86–97. Springer, Heidelberg (2010)
Motsinger, A.A., Hahn, L.W., Dudek, S.M., et al.: Alternative Cross-Over Strategies and Selection Techniques for Grammatical Evolution Optimized Neural Networks. In: Genet. Evol. Comput. Conf., pp. 947–948 (2006)
Turner, S.D., Dudek, S.M., Ritchie, M.D.: ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci. BioData. Min. 3(1), 5 (2010)
Bush, W.S., Dudek, S.M., Ritchie, M.D.: Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies. In: Pac. Symp. Biocomput., pp. 368–379 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Holzinger, E.R., Dudek, S.M., Torstenson, E.C., Ritchie, M.D. (2011). ATHENA Optimization: The Effect of Initial Parameter Settings across Different Genetic Models. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2011. Lecture Notes in Computer Science, vol 6623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20389-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-20389-3_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20388-6
Online ISBN: 978-3-642-20389-3
eBook Packages: Computer ScienceComputer Science (R0)