Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

ATHENA Optimization: The Effect of Initial Parameter Settings across Different Genetic Models

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6623))

  • 911 Accesses

Abstract

Rapidly advancing technology has allowed for the generation of massive amounts data assessing variation across the human genome. One analysis method for this type of data is the genome-wide association study (GWAS) where each variation is assessed individually for association to disease. While these studies have elucidated novel etiology, much of the variation due to genetics remains unexplained. One hypothesis is that some of the variation lies in gene-gene interactions. An impediment to testing for interactions is the infeasibility of exhaustively searching all multi-locus models. Novel methods are being developed that perform a non-exhaustive search. Because these methods are new to genetic studies, rigorous parameter optimization is necessary. Here, we assess genotype encodings, function sets, and cross-over in two algorithms which use grammatical evolution to optimize neural networks or symbolic regression formulas in the ATHENA software package. Our results show that the effect of these parameters is highly dependent on the underlying disease model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hindorff, L.A., Sethupathy, P., Junkins, H.A., et al.: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. U.S.A 106(23), 9362–9367 (2009)

    Article  Google Scholar 

  2. Nicolae, D.L., Gamazon, E., Zhang, W., et al.: Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 6(4), e1000888 (2010)

    Article  Google Scholar 

  3. Manolio, T.A., Collins, F.S., Cox, N.J., et al.: Finding the missing heritability of complex diseases. Nature 461(7265), 747–753 (2009)

    Article  Google Scholar 

  4. Maher, B.: Personal genomes: The case of the missing heritability. Nature 456(7218), 18–21 (2008)

    Article  Google Scholar 

  5. Motsinger, A.A., Ritchie, M.D., Reif, D.M.: Novel methods for detecting epistasis in pharmacogenomics studies. Pharmacogenomics 8(9), 1229–1241 (2007)

    Article  Google Scholar 

  6. Bateson, W.: Mendel’s Principles of Heredity. Cambridge University Press, Cambridge (1909)

    Book  Google Scholar 

  7. Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proc 6th Intl.Congress of Genetics, vol. 1, pp. 356–366 (1932)

    Google Scholar 

  8. Moore, J.H.: The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Hum. Hered. 56(1-3), 73–82 (2003)

    Article  Google Scholar 

  9. Moore, J.H., Barney, N., Tsai, C.T., et al.: Symbolic modeling of epistasis. Hum. Hered. 63(2), 120–133 (2007)

    Article  Google Scholar 

  10. Bishop, C.M.: Neural Networks for Pattern Recognition, pp. 1–482. Oxford University Press, London (1995)

    Google Scholar 

  11. Krogh, A.: What are artificial neural networks? Nat. Biotechnol. 26(2), 195–197 (2008)

    Article  Google Scholar 

  12. Koza, J.R., Rice, J.P.: Genetic generation of both the weights and architecture for a neural network. IEEE Transactions II (1991)

    Google Scholar 

  13. Ritchie, M.D., White, B.C., Parker, J.S., et al.: Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases. BMC Bioinformatics 4(1), 28 (2003)

    Article  Google Scholar 

  14. Koza, J.: Genetic Programmming: On the Programming of Computers by Means of Natural Selection, pp. 1–819. MIT Press, Cambridge (1992)

    Google Scholar 

  15. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  16. Moore, J.H., Parker, J.S., Olsen, N.J., et al.: Symbolic discriminant analysis of microarray data in autoimmune disease. Genet. Epidemiol. 23, 57–69 (2002)

    Article  Google Scholar 

  17. Motsinger-Reif, A.A., Dudek, S.M., Hahn, L.W., et al.: Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology. Genetic Epidemiology 32(4), 325–340 (2008)

    Article  Google Scholar 

  18. O’Neill, M., Ryan, C.: Grammatical Evolution. IEEE Transactions on Evolutionary Computation 5(4) (2001)

    Google Scholar 

  19. Holzinger, E.R., Buchanan, C.C., Dudek, S.M., et al.: Initialization Parameter Sweep in ATHENA: Optimizing Neural Networks for Detecting Gene-Gene Interactions in the Presence of Small Main Effects. In: Genet. Evol. Comput. Conf., pp. 203–210 (2010)

    Google Scholar 

  20. Reif, D.M., White, B.C., Olsen, N.J., et al.: Complex function sets improve symbolic discriminant analysis of microarray data. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724. Springer, Heidelberg (2003)

    Google Scholar 

  21. Dudek, S.M., Motsinger, A.A., Velez, D.R., et al.: Data simulation software for whole-genome association and other studies in human genetics. In: Pac. Symp. Biocomput., vol. 11, pp. 499–510 (2006)

    Google Scholar 

  22. Edwards, T.L., Bush, W.S., Turner, S.D., et al.: Generating Linkage Disequilibrium Patterns in Data Simulations Using genomeSIMLA, LNCS, vol. 4793. pp. 24–35 (2008)

    Google Scholar 

  23. Ott, J.: Neural networks and disease association studies. American Journal of Medical Genetics (Neuropsychiatric Genetics) 105(60), 61 (2001)

    Google Scholar 

  24. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language, First. Kluwer Academic Publishers, Norwell (2003)

    Book  MATH  Google Scholar 

  25. Turner, S.D., Dudek, S.M., Ritchie, M.D.: Grammatical Evolution of Neural Networks for Discovering Epistasis among Quantitative Trait Loci. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2010. LNCS, vol. 6023, pp. 86–97. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Motsinger, A.A., Hahn, L.W., Dudek, S.M., et al.: Alternative Cross-Over Strategies and Selection Techniques for Grammatical Evolution Optimized Neural Networks. In: Genet. Evol. Comput. Conf., pp. 947–948 (2006)

    Google Scholar 

  27. Turner, S.D., Dudek, S.M., Ritchie, M.D.: ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci. BioData. Min. 3(1), 5 (2010)

    Article  Google Scholar 

  28. Bush, W.S., Dudek, S.M., Ritchie, M.D.: Biofilter: a knowledge-integration system for the multi-locus analysis of genome-wide association studies. In: Pac. Symp. Biocomput., pp. 368–379 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holzinger, E.R., Dudek, S.M., Torstenson, E.C., Ritchie, M.D. (2011). ATHENA Optimization: The Effect of Initial Parameter Settings across Different Genetic Models. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2011. Lecture Notes in Computer Science, vol 6623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20389-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20389-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20388-6

  • Online ISBN: 978-3-642-20389-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics