Abstract
This paper describes an approximate quantifier elimination procedure for propositional Boolean formulae. The method is based on computing prime implicants using SAT and successively refining over-approximations of a given formula. This construction naturally leads to an anytime algorithm, that is, it can be interrupted at anytime without compromising soundness. This contrasts with classical monolithic (all or nothing) approaches based on resolution or model enumeration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armstrong, T., Marriott, K., Schachte, P., Søndergaard, H.: Two Classes of Boolean Functions for Dependency Analysis. Science of Computer Programming 31(1), 3–45 (1998)
Bender, E.A.: Mathematical Methods in Artificial Intelligence. IEEE Computer Society Press, Los Alamitos (1996)
Blake, A.: Canonical expressions in Boolean algebra. University of Chicago, Chicago (1938)
Brauer, J., King, A.: Automatic Abstraction for Intervals using Boolean Formulae. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 167–183. Springer, Heidelberg (2010)
Bryant, R.E.: Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams. ACM Computing Surveys 24(3), 293–318 (1992)
Bryant, R.E.: A View from the Engine Room: Computational Support for Symbolic Model Checking. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 145–149. Springer, Heidelberg (2008)
Burch, J.R., Clarke, E.M., McMillan, K.L.: Symbolic model checking: 1020 states and beyond. Information and Computation 98, 142–170 (1992)
Clarke, E., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004)
Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)
Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.: Ranking Function Synthesis for Bit-Vector Relations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 236–250. Springer, Heidelberg (2010)
Coste-Marquis, S., Le Berre, D., Letombe, F., Marquis, P.: Complexity Results for Quantified Boolean Formulae Based on Complete Propositional Languages. JSAT (1), 61–88 (2006)
Coudert, O., Madre, J.C.: Implicit and Incremental Computation of Primes and Essential Primes of Boolean Functions. In: DAC, pp. 36–39. IEEE, Los Alamitos (1992)
Duesterwald, E., Gupta, R., Soffa, M.L.: A Practical Framework for Demand-Driven Interprocedural Data Flow Analysis. ACM TOPLAS 19(6), 992–1030 (1997)
Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. JSAT 2(1-4), 1–26 (2006)
Ganai, M.K., Gupta, A., Ashar, P.: Efficient SAT-based unbounded symbolic model checking using circuit cofactoring. In: ICCAD, pp. 510–517. IEEE, Los Alamitos (2004)
Genaim, S., Giacobazzi, R., Mastroeni, I.: Modeling Secure Information Flow with Boolean Functions. In: IFIP WG 1.7, ACM Workshop on Issues in the Theory of Security, Barcelona, Spain, pp. 55–66 (2004)
Hansen, M.C., Yalcin, H., Hayes, J.P.: Unveiling the iscas-85 benchmarks: A case study in reverse engineering. IEEE Design & Test of Computers 16(3), 72–80 (1999)
Howe, J.M., King, A.: Positive Boolean Functions as Multiheaded Clauses. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 120–134. Springer, Heidelberg (2001)
Kettle, N., King, A., Strzemecki, T.: Widening ROBDDs with Prime Implicants. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 105–119. Springer, Heidelberg (2006)
King, A., Søndergaard, H.: Automatic Abstraction for Congruences. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 197–213. Springer, Heidelberg (2010)
Knuth, D.E.: Sorting and Searching. In: The Art of Computer Programming, vol. 3, Addison-Wesley, Reading (1997)
Kroening, D., Strichman, O.: Decision Procedures. Springer, Heidelberg (2008)
Le Berre, D.: SAT4J: Bringing the power of SAT technology to the Java platform (2010), http://www.sat4j.org/
Manquinho, V.M., Flores, P.F., Silva, J.P.M., Oliveira, A.L.: Prime implicant computation using satisfiability algorithms. In: International Conference on Tools with Artificial Intelligence, pp. 232–239. IEEE Press, Los Alamitos (1997)
McMillan, K.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)
McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002)
Monniaux, D.: Quantifier Elimination by Lazy Model Enumeration. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 585–599. Springer, Heidelberg (2010)
Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Journal of Symbolic Computation 2(3), 293–304 (1986)
Quine, W.V.: A Way to Simplify Truth Functions. American Mathematical Monthly 62(9), 627–631 (1995)
Reps, T., Sagiv, M., Yorsh, G.: Symbolic Implementation of the Best Transformer. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252–266. Springer, Heidelberg (2004)
Samson, E.W., Mills, B.E.: Circuit minimization: Algebra and Algorithms for new Boolean canonical expressions. Technical Report TR 54-21, United States Air Force, Cambridge Research Lab (1954)
Schlich, B.: Model checking of software for microcontrollers. ACM Trans. Embedded Comput. Syst. 9(4) (2010); Article Number 36
Tseitin, G.S.: On the complexity of derivation in the propositional calculus. In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic, vol. Part II, pp. 115–125 (1968)
Umans, C.: The Minimum Equivalent DNF Problem and Shortest Implicants. In: FOCS, pp. 556–563. IEEE Press, Los Alamitos (1998)
Whittemore, J., Kim, J., Sakallah, K.: SATIRE: a new incremental satisfiability engine. In: Design Automation Conference, pp. 542–545. ACM, New York (2001)
Wintersteiger, C.M., Hamadi, Y., de Moura, L.: Efficiently solving quantified bit-vector formulas. In: FMCAD (2010) (to appear)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brauer, J., King, A. (2011). Approximate Quantifier Elimination for Propositional Boolean Formulae. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds) NASA Formal Methods. NFM 2011. Lecture Notes in Computer Science, vol 6617. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20398-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-20398-5_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20397-8
Online ISBN: 978-3-642-20398-5
eBook Packages: Computer ScienceComputer Science (R0)