Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximate Quantifier Elimination for Propositional Boolean Formulae

  • Conference paper
NASA Formal Methods (NFM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6617))

Included in the following conference series:

Abstract

This paper describes an approximate quantifier elimination procedure for propositional Boolean formulae. The method is based on computing prime implicants using SAT and successively refining over-approximations of a given formula. This construction naturally leads to an anytime algorithm, that is, it can be interrupted at anytime without compromising soundness. This contrasts with classical monolithic (all or nothing) approaches based on resolution or model enumeration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Armstrong, T., Marriott, K., Schachte, P., Søndergaard, H.: Two Classes of Boolean Functions for Dependency Analysis. Science of Computer Programming 31(1), 3–45 (1998)

    Article  MATH  Google Scholar 

  2. Bender, E.A.: Mathematical Methods in Artificial Intelligence. IEEE Computer Society Press, Los Alamitos (1996)

    MATH  Google Scholar 

  3. Blake, A.: Canonical expressions in Boolean algebra. University of Chicago, Chicago (1938)

    MATH  Google Scholar 

  4. Brauer, J., King, A.: Automatic Abstraction for Intervals using Boolean Formulae. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 167–183. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Bryant, R.E.: Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams. ACM Computing Surveys 24(3), 293–318 (1992)

    Article  Google Scholar 

  6. Bryant, R.E.: A View from the Engine Room: Computational Support for Symbolic Model Checking. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 145–149. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Burch, J.R., Clarke, E.M., McMillan, K.L.: Symbolic model checking: 1020 states and beyond. Information and Computation 98, 142–170 (1992)

    Article  MATH  Google Scholar 

  8. Clarke, E., Kröning, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)

    Article  MATH  Google Scholar 

  10. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.: Ranking Function Synthesis for Bit-Vector Relations. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 236–250. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Coste-Marquis, S., Le Berre, D., Letombe, F., Marquis, P.: Complexity Results for Quantified Boolean Formulae Based on Complete Propositional Languages. JSAT (1), 61–88 (2006)

    Google Scholar 

  12. Coudert, O., Madre, J.C.: Implicit and Incremental Computation of Primes and Essential Primes of Boolean Functions. In: DAC, pp. 36–39. IEEE, Los Alamitos (1992)

    Google Scholar 

  13. Duesterwald, E., Gupta, R., Soffa, M.L.: A Practical Framework for Demand-Driven Interprocedural Data Flow Analysis. ACM TOPLAS 19(6), 992–1030 (1997)

    Article  Google Scholar 

  14. Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. JSAT 2(1-4), 1–26 (2006)

    MATH  Google Scholar 

  15. Ganai, M.K., Gupta, A., Ashar, P.: Efficient SAT-based unbounded symbolic model checking using circuit cofactoring. In: ICCAD, pp. 510–517. IEEE, Los Alamitos (2004)

    Google Scholar 

  16. Genaim, S., Giacobazzi, R., Mastroeni, I.: Modeling Secure Information Flow with Boolean Functions. In: IFIP WG 1.7, ACM Workshop on Issues in the Theory of Security, Barcelona, Spain, pp. 55–66 (2004)

    Google Scholar 

  17. Hansen, M.C., Yalcin, H., Hayes, J.P.: Unveiling the iscas-85 benchmarks: A case study in reverse engineering. IEEE Design & Test of Computers 16(3), 72–80 (1999)

    Article  Google Scholar 

  18. Howe, J.M., King, A.: Positive Boolean Functions as Multiheaded Clauses. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 120–134. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Kettle, N., King, A., Strzemecki, T.: Widening ROBDDs with Prime Implicants. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 105–119. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. King, A., Søndergaard, H.: Automatic Abstraction for Congruences. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 197–213. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Knuth, D.E.: Sorting and Searching. In: The Art of Computer Programming, vol. 3, Addison-Wesley, Reading (1997)

    Google Scholar 

  22. Kroening, D., Strichman, O.: Decision Procedures. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  23. Le Berre, D.: SAT4J: Bringing the power of SAT technology to the Java platform (2010), http://www.sat4j.org/

  24. Manquinho, V.M., Flores, P.F., Silva, J.P.M., Oliveira, A.L.: Prime implicant computation using satisfiability algorithms. In: International Conference on Tools with Artificial Intelligence, pp. 232–239. IEEE Press, Los Alamitos (1997)

    Google Scholar 

  25. McMillan, K.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  27. Monniaux, D.: Quantifier Elimination by Lazy Model Enumeration. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 585–599. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Journal of Symbolic Computation 2(3), 293–304 (1986)

    Article  MATH  Google Scholar 

  29. Quine, W.V.: A Way to Simplify Truth Functions. American Mathematical Monthly 62(9), 627–631 (1995)

    Article  MATH  Google Scholar 

  30. Reps, T., Sagiv, M., Yorsh, G.: Symbolic Implementation of the Best Transformer. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 252–266. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  31. Samson, E.W., Mills, B.E.: Circuit minimization: Algebra and Algorithms for new Boolean canonical expressions. Technical Report TR 54-21, United States Air Force, Cambridge Research Lab (1954)

    Google Scholar 

  32. Schlich, B.: Model checking of software for microcontrollers. ACM Trans. Embedded Comput. Syst. 9(4) (2010); Article Number 36

    Google Scholar 

  33. Tseitin, G.S.: On the complexity of derivation in the propositional calculus. In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic, vol. Part II, pp. 115–125 (1968)

    Google Scholar 

  34. Umans, C.: The Minimum Equivalent DNF Problem and Shortest Implicants. In: FOCS, pp. 556–563. IEEE Press, Los Alamitos (1998)

    Google Scholar 

  35. Whittemore, J., Kim, J., Sakallah, K.: SATIRE: a new incremental satisfiability engine. In: Design Automation Conference, pp. 542–545. ACM, New York (2001)

    Google Scholar 

  36. Wintersteiger, C.M., Hamadi, Y., de Moura, L.: Efficiently solving quantified bit-vector formulas. In: FMCAD (2010) (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brauer, J., King, A. (2011). Approximate Quantifier Elimination for Propositional Boolean Formulae. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds) NASA Formal Methods. NFM 2011. Lecture Notes in Computer Science, vol 6617. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20398-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20398-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20397-8

  • Online ISBN: 978-3-642-20398-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics