Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning and Predicting Financial Time Series by Combining Natural Computation and Agent Simulation

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6625))

Included in the following conference series:

Abstract

We investigate how, by combining natural computation and agent based simulation, it is possible to model financial time series. The agent based simulation can be used to functionally reproduce the structure of a financial market while the natural computation technique finds the most suitable parameter for the simulator. Our experimentation on the DJIA time series shows the effectiveness of this approach in modeling financial data. Also we compare the predictions made by our system to those obtained by other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arthur, W.B., Holland, J.H., LeBaron, B., Palmer, R., Taylorm, P.: Asset pricing under endogenous expectation in an artificial stock market. In: The Economy as an Evolving Complex System II. Santa Fe Institute Studies in the Sciences of Complexity Lecture Notes, pp. 15–44 (1997)

    Google Scholar 

  2. Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences 99(3), 7280–7287 (2002)

    Article  Google Scholar 

  3. Cesa, A.: Discussion about how financial markets work: an investment manager perspective. Personal correspondance with the author (2009)

    Google Scholar 

  4. Creamer, G., Freund, Y.: Automated trading with boosting and expert weighting. Quantitative Finance 4(10), 401–420 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dempster, M.A.H., Payne, T.W., Romahi, Y., Thompson, G.W.P.: Computational learning techniques for intraday fx trading using popular technical indicators. IEEE Transactions on Neural Networks 12(4), 744–754 (2001)

    Article  Google Scholar 

  6. Epstein, J.M., Axtell, R.: Growing artificial societies: social science from the bottom up. The Brookings Institution, Washington, DC, USA (1996)

    Google Scholar 

  7. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  8. Hoffmann, A.O.I., Delre, S.A., von Eije, J.H., Jager, W.: Artificial multi-agent stock markets: Simple strategies, complex outcomes. In: Advances in Artificial Economics. LNEMS, vol. 584, pp. 167–176. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Kendall, G., Su, Y.: A multi-agent based simulated stock market - testing on different types of stocks. In: Congress on Evolutionary Computation, CEC 2003, pp. 2298–2305 (2003)

    Google Scholar 

  10. Kennedy, J., Eberhard, R.: Particle swarm optimization. In: Int. Conf. on Neural Networks, pp. 1942–1948. IEEE press, Los Alamitos (1995)

    Google Scholar 

  11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kitov, I.: Predicting conocophillips and exxon mobil stock price. Journal of Applied Research in Finance 2, 129–134 (2009)

    Google Scholar 

  13. Lebaron, B.: Agent based computational finance: Suggested readings and early research. Journal of Economic Dynamics and Control 24, 679–702 (1998)

    Article  MATH  Google Scholar 

  14. Majhi, R., Sahoo, G., Panda, A., Choubey, A.: Prediction of sp500 and djia stock indices using particle swarm optimization techniques. In: Congress on Evolutionary Computation 2008, pp. 1276–1282. IEEE Press, Los Alamitos (2008)

    Google Scholar 

  15. Neri, F.: Empirical investigation of word-of-mouth phenomena in markets: a software agent approach. WSEAS Transaction on Computers 4(8), 987–994 (2005)

    Google Scholar 

  16. Neri, F.: Using software agents to simulate how investors’ greed and fear emotions explain the behavior of a financial market. In: WSEAS Conference ICOSSE 2009, Genoa, Italy, pp. 241–245 (2009)

    Google Scholar 

  17. Neri, F., Saitta, L.: Exploring the power of genetic search in learning symbolic classifiers. IEEE Trans. on Pattern Analysis and Machine Intelligence PAMI-18(11), 1135–1142 (1996)

    Article  Google Scholar 

  18. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, California (1993)

    Google Scholar 

  19. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition. foundations, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  20. Schulenburg, S., Ross, P., Bridge, S.: An adaptive agent based economic model. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 263–284. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  21. Takahashi, H., Terano, T.: Analyzing the influence of overconfident investors on financial markets through agent-based model. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 1042–1052. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Tesfatsion, L.: Agent-based computational economics: Growing economies from the bottom up. Artif. Life 8(1), 55–82 (2002)

    Article  Google Scholar 

  23. Zirilli, J.: Financial prediction using Neural Networks. International Thompson Computer Press (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neri, F. (2011). Learning and Predicting Financial Time Series by Combining Natural Computation and Agent Simulation. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2011. Lecture Notes in Computer Science, vol 6625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20520-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20520-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20519-4

  • Online ISBN: 978-3-642-20520-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics