Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Subexponential Lower Bound for Zadeh’s Pivoting Rule for Solving Linear Programs and Games

  • Conference paper
Integer Programming and Combinatoral Optimization (IPCO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6655))

Abstract

The simplex algorithm is among the most widely used algorithms for solving linear programs in practice. Most pivoting rules are known, however, to need an exponential number of steps to solve some linear programs. No non-polynomial lower bounds were known, prior to this work, for Zadeh’s pivoting rule [25].

Also known as the Least-Entered, rule, Zadeh’s pivoting method belongs to the family of memorizing improvement rules, which among all improving pivoting steps from the current basic feasible solution (or vertex) chooses one which has been entered least often. We provide the first subexponential (i.e., of the form \(2^{\Omega(\sqrt{n})}\)) lower bound for this rule.

Our lower bound is obtained by utilizing connections between pivoting steps performed by simplex-based algorithms and improving switches performed by policy iteration algorithms for 1-player and 2-player games. We start by building 2-player parity games (PGs) on which the policy iteration with the Least-Entered, rule performs a subexponential number of iterations. We then transform the parity games into 1-player Markov Decision Processes (MDPs) which corresponds almost immediately to concrete linear programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avis, D., Chvátal, V.: Notes on Bland’s pivoting rule. In: Polyhedral Combinatorics, Mathematical Programming Studies, vol. 8, pp. 24–34. Springer, Heidelberg (1978), http://dx.doi.org/10.1007/BFb0121192

    Chapter  Google Scholar 

  2. Bertsekas, D.: Dynamic programming and optimal control, 2nd edn. Athena Scientific, Singapore (2001)

    MATH  Google Scholar 

  3. Bhat, G.S., Savage, C.D.: Balanced gray codes. Electronic Journal of Combinatorics 3, 2–5 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Broder, A., Dyer, M., Frieze, A., Raghavan, P., Upfal, E.: The worst-case running time of the random simplex algorithm is exponential in the height. Inf. Process. Lett. 56(2), 79–81 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dantzig, G.: Linear programming and extensions. Princeton University Press, Princeton (1963)

    Book  MATH  Google Scholar 

  6. Derman, C.: Finite state Markov decision processes. Academic Press, London (1972)

    MATH  Google Scholar 

  7. Fathi, Y., Tovey, C.: Affirmative action algorithms. Math. Program. 34(3), 292–301 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fearnley, J.: Exponential lower bounds for policy iteration. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 551–562. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Friedmann, O.: An exponential lower bound for the parity game strategy improvement algorithm as we know it. In: Proc. of 24th LICS, pp. 145–156 (2009)

    Google Scholar 

  10. Friedmann, O.: An exponential lower bound for the latest deterministic strategy iteration algorithms. Selected Papers of the Conference “Logic in Computer Science 2009” (to appear) (2010), a preprint available from http://www.tcs.ifi.lmu.de/~friedman

  11. Friedmann, O., Hansen, T., Zwick, U.: A subexponential lower bound for the random facet algorithm for parity games. In: Proc. of 22nd SODA (2011) (to appear)

    Google Scholar 

  12. Friedmann, O., Hansen, T., Zwick, U.: Subexponential lower bounds for randomized pivoting rules for solving linear programs (2011), a preprint available from http://www.tcs.ifi.lmu.de/~friedman

  13. Gärtner, B., Henk, M., Ziegler, G.: Randomized simplex algorithms on Klee-Minty cubes. Combinatorica 18(3), 349–372 (1998), http://dx.doi.org/10.1007/PL00009827

    Article  MathSciNet  MATH  Google Scholar 

  14. Gärtner, B., Tschirschnitz, F., Welzl, E., Solymosi, J., Valtr, P.: One line and n points. Random Structures & Algorithms 23(4), 453–471 (2003), http://dx.doi.org/10.1002/rsa.10099

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldfarb, D., Sit, W.: Worst case behavior of the steepest edge simplex method. Discrete Applied Mathematics 1(4), 277–285 (1979), http://www.sciencedirect.com/science/article/B6TYW-45GVXJ1-2B/2/a7035da2cf84d35e9503c69f883c23f7

    Article  MathSciNet  MATH  Google Scholar 

  16. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  17. Howard, R.: Dynamic programming and Markov processes. MIT Press, Cambridge (1960)

    MATH  Google Scholar 

  18. Jeroslow, R.G.: The simplex algorithm with the pivot rule of maximizing criterion improvement. Discrete Mathematics 4(4), 367–377 (1973), http://www.sciencedirect.com/science/article/B6V00-45FSNXP-1H/2/0968f0b25d2d8a2e0e160a8a248d06de

    Article  MathSciNet  MATH  Google Scholar 

  19. Kalai, G.: A subexponential randomized simplex algorithm (extended abstract). In: Proc. of 24th STOC. pp. 475–482 (1992)

    Google Scholar 

  20. Kalai, G.: Linear programming, the simplex algorithm and simple polytopes. Mathematical Programming 79, 217–233 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Klee, V., Minty, G.J.: How good is the simplex algorithm? In: Shisha, O. (ed.) Inequalities III, pp. 159–175. Academic Press, New York (1972)

    Google Scholar 

  22. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16(4-5), 498–516 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Puterman, M.: Markov decision processes. Wiley, Chichester (1994)

    Book  MATH  Google Scholar 

  24. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games (Extended abstract). In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  25. Zadeh, N.: What is the worst case behavior of the simplex algorithm? Tech. Rep. 27, Department of Operations Research, Stanford (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedmann, O. (2011). A Subexponential Lower Bound for Zadeh’s Pivoting Rule for Solving Linear Programs and Games. In: Günlük, O., Woeginger, G.J. (eds) Integer Programming and Combinatoral Optimization. IPCO 2011. Lecture Notes in Computer Science, vol 6655. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20807-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20807-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20806-5

  • Online ISBN: 978-3-642-20807-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics