Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Slice-Based Combination of Rest and Dobutamine–Stress Cardiac MRI Using a Statistical Motion Model to Identify Myocardial Infarction: Validation against Contrast-Enhanced MRI

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2011)

Abstract

This paper presents an automated method for regional wall motion abnormality detection (RWMA) from rest and stress cardiac MRI. The automated RWMA detection is based on a statistical shape model of myocardial contraction trained on slice-based myocardial contours from in ED and ES. A combination of rigid and non-rigid registrations is introduced to align a patient shape to the normokinetic myocardium model, where pure contractility information is kept. The automated RWMA method is applied to identify potentially infarcted myocardial segments from rest–stress MRI alone.

In this study, 41 cardiac MRI studies of healthy subjects were used to build the statistical normokinetic model, while 12 myocardial infarct patients were included for validation. The rest–stress data produced a better separation between scar and normal segments compared to the rest–only data. The sensitivity, specificity and accuracy were increased by 34%, 30%, and 32%, respectively. The area under the ROC curve for the rest–stress data was improved to 0.87 compared to 0.63 for the rest–only data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bookstein, F.L.: Principal Warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  2. Caiani, E.G., Toledo, E., et al.: Automated interpretation of regional left ventricular wall motion from cardiac magnetic resonance images. J. Cardiovasc Magn. Reson. 8(3), 427–433 (2006)

    Article  Google Scholar 

  3. Dryden, I.L., Mardia, K.V.: Statistical shape analysis. John Wiley & Sons, Inc., Chichester (1998)

    MATH  Google Scholar 

  4. van der Geest, R.J., Buller, V.G., et al.: Comparison between manual and semiautomated analysis of left ventricular volume parameters from short-axis MR images. J. Comput. Assist. Tomogr. 21(5), 756–765 (1997)

    Article  Google Scholar 

  5. Herz, S.L., Ingrassia, C.M., et al.: Parameterization of left ventricular wall motion for detection of regional ischemia. Ann. Biomed. Eng. 33(7), 912–919 (2005)

    Article  Google Scholar 

  6. Heusch, G., Schulz, R., Rahimtoola, S.H.: Myocardial hibernation: a delicate balance. Am. J. Physiol. Heart Circ. Physiol. 288(3), H984–H999 (2005)

    Article  Google Scholar 

  7. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, Inc., Chichester (2001)

    Book  Google Scholar 

  8. Kaandorp, T.A.M., Bax, J.J., Schuijf, J.D., et al.: Head-to-head comparison between contrast-enhanced magnetic resonance imaging and dobutamine magnetic resonance imaging in men with ischemic cardiomyopathy. Am. J. Cardiol. 93(12), 1461–1464 (2004)

    Article  Google Scholar 

  9. Kachenoura, N., Redheuil, A., et al.: Evaluation of regional myocardial function using automated wall motion analysis of cine MR images: Contribution of parametric images, contraction times, and radial velocities. J. Magn. Reson. Imaging 26(4), 1127–1132 (2007)

    Article  Google Scholar 

  10. Kim, R.J., Wu, E., Rafael, A., et al.: The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 343(20), 1445–1453 (2000)

    Article  Google Scholar 

  11. Mahrholdt, H., Klem, I., Sechtem, U.: Cardiovascular MRI for detection of myocardial viability and ischaemia. Heart 93(1), 122–129 (2007)

    Article  Google Scholar 

  12. Qazi, M., Fung, G., et al.: Automated heart abnormality detection using sparse linear classifiers. IEEE Eng. Med. Biol. Mag. 26(2), 56–63 (2007)

    Article  Google Scholar 

  13. Saraste, A., Nekolla, S., Schwaiger, M.: Contrast-enhanced magnetic resonance imaging in the assessment of myocardial infarction and viability. J. Nucl. Cardiol. 15(1), 105–117 (2008)

    Article  Google Scholar 

  14. Sheather, S.J., Jones, M.C.: A reliable data-based bandwidth selection method for kernel density estimation. J. R. Stat. Soc. Series B Stat. Methodol. 53(3), 683–690 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Suinesiaputra, A., Frangi, A.F., Kaandorp, T.A.M., Lamb, H.J., Bax, J.J., Reiber, J.H.C., Lelieveldt, B.P.F.: Automated detection of regional wall motion abnormalities based on a statistical model applied to multislice short-axis cardiac MR images. IEEE Trans. Med. Imaging 28(4), 595–607 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suinesiaputra, A. et al. (2011). Slice-Based Combination of Rest and Dobutamine–Stress Cardiac MRI Using a Statistical Motion Model to Identify Myocardial Infarction: Validation against Contrast-Enhanced MRI. In: Metaxas, D.N., Axel, L. (eds) Functional Imaging and Modeling of the Heart. FIMH 2011. Lecture Notes in Computer Science, vol 6666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21028-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21028-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21027-3

  • Online ISBN: 978-3-642-21028-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics