Abstract
We propose a new secret sharing scheme which can be computed over an Abelian group, such as (Binary string, XOR) and (Integer, Addition). Therefore, only the XOR or the addition operations are required to implement the scheme. It is very efficient and fits for low-cost low-energy applications such as RFID tags. Making shares has a geometric presentation which makes our scheme be easily understood and analyzed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Transactions on Information Theory 29(2), 208–210 (1983)
Bai, L.: A strong ramp secret sharing scheme using matrix projection. In: Proceedings of the 2006 International Symposium on a World of Wireless, pp. 652–656 (2006)
Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. AFIPS 1979 National Computer Conference, pp. 313–317. AFIPS (1979)
Blakley, G., Kabatianski, G.: Ideal perfect threshold schemes and mds codes, p. 488 (September 1995)
Cramer, R., Fehr, S.: Optimal black-box secret sharing over arbitrary abelian groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 272–287. Springer, Heidelberg (2002), http://portal.acm.org/citation.cfm?id=646767.704439
Desmedt, Y.G., Frankel, Y.: Perfect homomorphic zero-knowledge threshold schemes over any finite abelian group. SIAM J. Discret. Math. 7(4), 667–679 (1994)
Erdelsky, P.J.: Rijndael encryption algorithm, http://www.efgh.com/software/rijndael.htm
Goodson, G.R., Wylie, J.J., Ganger, G.R., Reiter, M.K.: Efficient byzantine-tolerant erasure-coded storage. In: Proceedings of the 2004 International Conference on Dependable Systems and Networks, p. 135. IEEE Computer Society, Washington, DC, USA (2004), http://portal.acm.org/citation.cfm?id=1009382.1009729
Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structures. In: Proceedings of the IEEE Global Communication Conference, pp. 99–102 (1987)
Juels, A., Pappu, R., Parno, B.: Unidirectional key distribution across time and space with applications to rfid security. In: Proceedings of the 17th Conference on Security Symposium, pp. 75–90. USENIX Association, Berkeley (2008), http://portal.acm.org/citation.cfm?id=1496711.1496717
Kapoor, H., Huang, D.: Secret-sharing based secure communication protocols for passive rfids. In: Global Telecommunications Conference, 2009. GLOBECOM 2009, December 4-30, pp. 1–6. IEEE, Los Alamitos (2009)
Karnin, E.D., Member, S., Greene, J.W., Member, S., Hellman, M.E.: On secret sharing systems. IEEE Transactions on Information Theory 29, 35–41 (1983)
Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A new (k,n)-threshold secret sharing scheme and its extension. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 455–470. Springer, Heidelberg (2008)
Langheinrich, M., Marti, R.: Rfid privacy using spatially distributed shared secrets. In: Ichikawa, H., Cho, W.-D., Chen, Y., Youn, H.Y. (eds.) UCS 2007. LNCS, vol. 4836, pp. 1–16. Springer, Heidelberg (2007), http://portal.acm.org/citation.cfm?id=1775574.1775576
Chien, H.Y., Jan, J.K., Tseng, Y.M.: A practical (t,n) multi-secret sharing scheme. IEICE Trans. on Fundamentals 12, 2762–2765 (2000)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977)
Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279 (1993)
Poettering, B.: Ssss: Shamir’s secret sharing scheme, http://point-at-infinity.org/ssss/
Shamir, A.: How to share a secret? Communication of the ACM 22, 612–613 (1979)
Subbiah, A., Blough, D.M.: An approach for fault tolerant and secure data storage in collaborative work environments. In: Proceedings of the First International Workshop on Storage Security and Survivability, pp. 84–93 (2005)
Wang, Q., Jing, J., Lin, J.: A secure storage system combining secret sharing schemes and byzantine quorum mechanisms. In: CIT, pp. 596–603 (2010)
Wu, T., He, W.: A geometric approach for sharing secrets. Computers and Security 14, 135–145(11) (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lv, C., Jia, X., Lin, J., Jing, J., Tian, L. (2011). An Efficient Group-Based Secret Sharing Scheme. In: Bao, F., Weng, J. (eds) Information Security Practice and Experience. ISPEC 2011. Lecture Notes in Computer Science, vol 6672. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21031-0_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-21031-0_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21030-3
Online ISBN: 978-3-642-21031-0
eBook Packages: Computer ScienceComputer Science (R0)