Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Efficient Group-Based Secret Sharing Scheme

  • Conference paper
Information Security Practice and Experience (ISPEC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6672))

Abstract

We propose a new secret sharing scheme which can be computed over an Abelian group, such as (Binary string, XOR) and (Integer, Addition). Therefore, only the XOR or the addition operations are required to implement the scheme. It is very efficient and fits for low-cost low-energy applications such as RFID tags. Making shares has a geometric presentation which makes our scheme be easily understood and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Transactions on Information Theory 29(2), 208–210 (1983)

    Article  MathSciNet  Google Scholar 

  2. Bai, L.: A strong ramp secret sharing scheme using matrix projection. In: Proceedings of the 2006 International Symposium on a World of Wireless, pp. 652–656 (2006)

    Google Scholar 

  3. Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. AFIPS 1979 National Computer Conference, pp. 313–317. AFIPS (1979)

    Google Scholar 

  4. Blakley, G., Kabatianski, G.: Ideal perfect threshold schemes and mds codes, p. 488 (September 1995)

    Google Scholar 

  5. Cramer, R., Fehr, S.: Optimal black-box secret sharing over arbitrary abelian groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 272–287. Springer, Heidelberg (2002), http://portal.acm.org/citation.cfm?id=646767.704439

    Chapter  Google Scholar 

  6. Desmedt, Y.G., Frankel, Y.: Perfect homomorphic zero-knowledge threshold schemes over any finite abelian group. SIAM J. Discret. Math. 7(4), 667–679 (1994)

    Article  MATH  Google Scholar 

  7. Erdelsky, P.J.: Rijndael encryption algorithm, http://www.efgh.com/software/rijndael.htm

  8. Goodson, G.R., Wylie, J.J., Ganger, G.R., Reiter, M.K.: Efficient byzantine-tolerant erasure-coded storage. In: Proceedings of the 2004 International Conference on Dependable Systems and Networks, p. 135. IEEE Computer Society, Washington, DC, USA (2004), http://portal.acm.org/citation.cfm?id=1009382.1009729

    Chapter  Google Scholar 

  9. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structures. In: Proceedings of the IEEE Global Communication Conference, pp. 99–102 (1987)

    Google Scholar 

  10. Juels, A., Pappu, R., Parno, B.: Unidirectional key distribution across time and space with applications to rfid security. In: Proceedings of the 17th Conference on Security Symposium, pp. 75–90. USENIX Association, Berkeley (2008), http://portal.acm.org/citation.cfm?id=1496711.1496717

    Google Scholar 

  11. Kapoor, H., Huang, D.: Secret-sharing based secure communication protocols for passive rfids. In: Global Telecommunications Conference, 2009. GLOBECOM 2009, December 4-30, pp. 1–6. IEEE, Los Alamitos (2009)

    Google Scholar 

  12. Karnin, E.D., Member, S., Greene, J.W., Member, S., Hellman, M.E.: On secret sharing systems. IEEE Transactions on Information Theory 29, 35–41 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A new (k,n)-threshold secret sharing scheme and its extension. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 455–470. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Langheinrich, M., Marti, R.: Rfid privacy using spatially distributed shared secrets. In: Ichikawa, H., Cho, W.-D., Chen, Y., Youn, H.Y. (eds.) UCS 2007. LNCS, vol. 4836, pp. 1–16. Springer, Heidelberg (2007), http://portal.acm.org/citation.cfm?id=1775574.1775576

    Chapter  Google Scholar 

  15. Chien, H.Y., Jan, J.K., Tseng, Y.M.: A practical (t,n) multi-secret sharing scheme. IEICE Trans. on Fundamentals 12, 2762–2765 (2000)

    Google Scholar 

  16. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1977)

    MATH  Google Scholar 

  17. Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279 (1993)

    Google Scholar 

  18. Poettering, B.: Ssss: Shamir’s secret sharing scheme, http://point-at-infinity.org/ssss/

  19. Shamir, A.: How to share a secret? Communication of the ACM 22, 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Subbiah, A., Blough, D.M.: An approach for fault tolerant and secure data storage in collaborative work environments. In: Proceedings of the First International Workshop on Storage Security and Survivability, pp. 84–93 (2005)

    Google Scholar 

  21. Wang, Q., Jing, J., Lin, J.: A secure storage system combining secret sharing schemes and byzantine quorum mechanisms. In: CIT, pp. 596–603 (2010)

    Google Scholar 

  22. Wu, T., He, W.: A geometric approach for sharing secrets. Computers and Security 14, 135–145(11) (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lv, C., Jia, X., Lin, J., Jing, J., Tian, L. (2011). An Efficient Group-Based Secret Sharing Scheme. In: Bao, F., Weng, J. (eds) Information Security Practice and Experience. ISPEC 2011. Lecture Notes in Computer Science, vol 6672. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21031-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21031-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21030-3

  • Online ISBN: 978-3-642-21031-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics