Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Splitting Atoms in Relational Algebras

  • Conference paper
Relational and Algebraic Methods in Computer Science (RAMICS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6663))

Abstract

Splitting atoms in a relation algebra is a common tool to generate new algebras from old ones. This includes constructing non-representable algebras from representable structures. The known method of splitting atoms does not allow that bijections different from the identity are contained in the starting algebra. This is a major drawback of that method because interesting candidates in mereotopology do contain such bijections. An ad-hoc splitting was done in those examples, and the results have been published in several papers. With this paper we want to start a thorough investigation of possible splitting methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andréka, H., Düntsch, I., Németi, I.: A non permutational integral relation algebra. Michigan Math. J. 39, 371–384 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andréka, H., Maddux, R.D., Németi, I.: Splitting in relation algebras. Proc. Amer. Math. Soc. 111(4), 1085–1093 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birkhoff, G.: Lattice Theory. 3rd edn., vol. XXV. American Mathematical Society Colloquium Publications (1968)

    Google Scholar 

  4. de Laguna, T.: Point, line, and surface, as sets of solids. J. of Philosophy 19(17), 449–461 (1922)

    Article  Google Scholar 

  5. Dimov, G., Vakarelov, D.: Contact algebras and region-based theory of space: A proximity approach - I. Fundamenta Informaticae 74(2-3), 209–249 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Düntsch, I.: Relation algebras and their application in temporal and spatial reasoning. Artificial Intelligence Review 23, 315–357 (2005)

    Article  MATH  Google Scholar 

  7. Düntsch, I., Schmidt, G., Winter, M.: A necessary relation algebra for mereotopology. Studia Logica 69, 381–409 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Düntsch, I., Wang, H., McCloskey, S.: Relation algebras in qualitative spatial reasoning. Fundamenta Informaticae 39(3), 229–248 (2000)

    MathSciNet  Google Scholar 

  9. Düntsch, I., Wang, H., McCloskey, S.: A relation algebraic approach to the Region Connection Calculus. Theoretical Computer Science 255, 63–83 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Düntsch, I., Winter, M.: A Representation Theorem for Boolean Contact Algebras. Theoretical Computer Science 347, 498–512 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Düntsch, I., Winter, M.: Weak Contact Structures. In: MacCaull, W., Winter, M., Düntsch, I. (eds.) RelMiCS 2005. LNCS, vol. 3929, pp. 73–82. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Frias, M., Maddux, R.D.: Non-embeddable simple relation algebras. Algebra Universalis 38(2), 115–135 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gotts, N.M.: Topology from a single primitive relation: Defining topological properties and relations in terms of connection. Research Report 96.23, School of Computer Studies, University of Leeds (1996)

    Google Scholar 

  14. Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser, Basel (1998)

    MATH  Google Scholar 

  15. Henkin, L., Monk, J.D., Tarski, A.: Cylindric algebras, Part II. North-Holland, Amsterdam (1985)

    MATH  Google Scholar 

  16. Hirsch, R., Hodkinson, I.: Strongly representable atom structures of relation algebras. Proceedings of the Amer. Math. Soc. 130, 1819–1831 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jónsson, B., Tarski, A.: Boolean algebras with operators, Part II. Amer. Journal of Mathematics 73, 127–162 (1952)

    Article  MATH  Google Scholar 

  18. Kahl, W., Schmidt, G.: Exploring (Finite) Relation Algebras Using Tools Written in Haskell. Universität der Bundeswehr München, Report Nr. 2000-02 (2000)

    Google Scholar 

  19. Koppelberg, S.: General Theory of Boolean Algebras. In: Handbook on Boolean Algebras, vol. 1, North-Holland, Amsterdam (1989)

    Google Scholar 

  20. Maddux, R.D.: Some varieties containing relation algebras. Trans. Amer. Math. Soc. 272, 501–526 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maddux, R.D.: Finite integral relation algebras. In: Comer, S.D. (ed.) Universal Algebra and Lattice Theory, Proceedings of a Conference held at Charleston, LNM, vol. 1149, pp. 175–197 (1985)

    Google Scholar 

  22. Maddux, R.D.: Relation Algebras. Studies in Logic and the Foundations of Mathematics, vol. 150. Elsevier Science, Amsterdam (2006)

    Google Scholar 

  23. Offermann, E.: On the Construction of Relational Categories. Presented at RelMiCS 7, Kiel (2003), http://www.informatik.uni-kiel.de/~relmics7/submitted/

  24. Offermann, E.: Konstruktion relationaler Kategorien. Dissertation, Der Andere Verlag, Osnabrück (2003) ISBN 3-89959-078-3

    Google Scholar 

  25. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proc. of KR 1992: Principles of Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  26. Randell, D.A., Cohn, A.G., Cui, Z.: Computing transitivity tables: A challenge for automated theorem provers. In: Hapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 786–790. Springer, Heidelberg (1992)

    Google Scholar 

  27. Schmidt, G., Ströhlein, T.: Relations and Graphs. Discrete Mathematics for Computer Scientists. Springer, Heidelberg (1993)

    Book  MATH  Google Scholar 

  28. Stell, J.G.: Boolean connection algebras: a new approach to the region-connection calculus. Artificial Intelligence 122, 111–136 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73–89 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tarski, A., Givant, S.: A formalization of set theory without variables, vol. 41. Colloquium Publications, Amer. Math. Soc., Providence (1987)

    MATH  Google Scholar 

  31. Vakarelov, D., Dimov, G., Düntsch, I., Bennett, B.: A proximity approach to some region-based theories of space. Journal of Applied Non-classical Logics 12(3-4), 527–559 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Whitehead, A.N.: Process and Reality. Macmillan, Basingstoke (1929)

    MATH  Google Scholar 

  33. Winter, M.: Relation Algebras are Matrix Algebras over a Suitable Basis. Universität der Bundeswehr München, Report Nr. 1998-05 (1998)

    Google Scholar 

  34. Winter, M.: A Pseudo Representation Theorem for Various Categories of Relations. Theory and Applications of Categories 7(2), 23–37 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siddavaatam, P., Winter, M. (2011). Splitting Atoms in Relational Algebras. In: de Swart, H. (eds) Relational and Algebraic Methods in Computer Science. RAMICS 2011. Lecture Notes in Computer Science, vol 6663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21070-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21070-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21069-3

  • Online ISBN: 978-3-642-21070-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics