Abstract
Splitting atoms in a relation algebra is a common tool to generate new algebras from old ones. This includes constructing non-representable algebras from representable structures. The known method of splitting atoms does not allow that bijections different from the identity are contained in the starting algebra. This is a major drawback of that method because interesting candidates in mereotopology do contain such bijections. An ad-hoc splitting was done in those examples, and the results have been published in several papers. With this paper we want to start a thorough investigation of possible splitting methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andréka, H., Düntsch, I., Németi, I.: A non permutational integral relation algebra. Michigan Math. J. 39, 371–384 (1992)
Andréka, H., Maddux, R.D., Németi, I.: Splitting in relation algebras. Proc. Amer. Math. Soc. 111(4), 1085–1093 (1991)
Birkhoff, G.: Lattice Theory. 3rd edn., vol. XXV. American Mathematical Society Colloquium Publications (1968)
de Laguna, T.: Point, line, and surface, as sets of solids. J. of Philosophy 19(17), 449–461 (1922)
Dimov, G., Vakarelov, D.: Contact algebras and region-based theory of space: A proximity approach - I. Fundamenta Informaticae 74(2-3), 209–249 (2006)
Düntsch, I.: Relation algebras and their application in temporal and spatial reasoning. Artificial Intelligence Review 23, 315–357 (2005)
Düntsch, I., Schmidt, G., Winter, M.: A necessary relation algebra for mereotopology. Studia Logica 69, 381–409 (2001)
Düntsch, I., Wang, H., McCloskey, S.: Relation algebras in qualitative spatial reasoning. Fundamenta Informaticae 39(3), 229–248 (2000)
Düntsch, I., Wang, H., McCloskey, S.: A relation algebraic approach to the Region Connection Calculus. Theoretical Computer Science 255, 63–83 (2001)
Düntsch, I., Winter, M.: A Representation Theorem for Boolean Contact Algebras. Theoretical Computer Science 347, 498–512 (2005)
Düntsch, I., Winter, M.: Weak Contact Structures. In: MacCaull, W., Winter, M., Düntsch, I. (eds.) RelMiCS 2005. LNCS, vol. 3929, pp. 73–82. Springer, Heidelberg (2006)
Frias, M., Maddux, R.D.: Non-embeddable simple relation algebras. Algebra Universalis 38(2), 115–135 (1997)
Gotts, N.M.: Topology from a single primitive relation: Defining topological properties and relations in terms of connection. Research Report 96.23, School of Computer Studies, University of Leeds (1996)
Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser, Basel (1998)
Henkin, L., Monk, J.D., Tarski, A.: Cylindric algebras, Part II. North-Holland, Amsterdam (1985)
Hirsch, R., Hodkinson, I.: Strongly representable atom structures of relation algebras. Proceedings of the Amer. Math. Soc. 130, 1819–1831 (2002)
Jónsson, B., Tarski, A.: Boolean algebras with operators, Part II. Amer. Journal of Mathematics 73, 127–162 (1952)
Kahl, W., Schmidt, G.: Exploring (Finite) Relation Algebras Using Tools Written in Haskell. Universität der Bundeswehr München, Report Nr. 2000-02 (2000)
Koppelberg, S.: General Theory of Boolean Algebras. In: Handbook on Boolean Algebras, vol. 1, North-Holland, Amsterdam (1989)
Maddux, R.D.: Some varieties containing relation algebras. Trans. Amer. Math. Soc. 272, 501–526 (1982)
Maddux, R.D.: Finite integral relation algebras. In: Comer, S.D. (ed.) Universal Algebra and Lattice Theory, Proceedings of a Conference held at Charleston, LNM, vol. 1149, pp. 175–197 (1985)
Maddux, R.D.: Relation Algebras. Studies in Logic and the Foundations of Mathematics, vol. 150. Elsevier Science, Amsterdam (2006)
Offermann, E.: On the Construction of Relational Categories. Presented at RelMiCS 7, Kiel (2003), http://www.informatik.uni-kiel.de/~relmics7/submitted/
Offermann, E.: Konstruktion relationaler Kategorien. Dissertation, Der Andere Verlag, Osnabrück (2003) ISBN 3-89959-078-3
Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proc. of KR 1992: Principles of Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Francisco (1992)
Randell, D.A., Cohn, A.G., Cui, Z.: Computing transitivity tables: A challenge for automated theorem provers. In: Hapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 786–790. Springer, Heidelberg (1992)
Schmidt, G., Ströhlein, T.: Relations and Graphs. Discrete Mathematics for Computer Scientists. Springer, Heidelberg (1993)
Stell, J.G.: Boolean connection algebras: a new approach to the region-connection calculus. Artificial Intelligence 122, 111–136 (2000)
Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73–89 (1941)
Tarski, A., Givant, S.: A formalization of set theory without variables, vol. 41. Colloquium Publications, Amer. Math. Soc., Providence (1987)
Vakarelov, D., Dimov, G., Düntsch, I., Bennett, B.: A proximity approach to some region-based theories of space. Journal of Applied Non-classical Logics 12(3-4), 527–559 (2002)
Whitehead, A.N.: Process and Reality. Macmillan, Basingstoke (1929)
Winter, M.: Relation Algebras are Matrix Algebras over a Suitable Basis. Universität der Bundeswehr München, Report Nr. 1998-05 (1998)
Winter, M.: A Pseudo Representation Theorem for Various Categories of Relations. Theory and Applications of Categories 7(2), 23–37 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Siddavaatam, P., Winter, M. (2011). Splitting Atoms in Relational Algebras. In: de Swart, H. (eds) Relational and Algebraic Methods in Computer Science. RAMICS 2011. Lecture Notes in Computer Science, vol 6663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21070-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-21070-9_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21069-3
Online ISBN: 978-3-642-21070-9
eBook Packages: Computer ScienceComputer Science (R0)