Abstract
This paper concerns simultaneous localization and mapping (SLAM) of large areas. In SLAM the map creation is based on identified landmarks in the environment. When mapping large areas a vast number of landmarks have to be treated, which usually is very time consuming. A common way to reduce the computational complexity is to divide the visited area into submaps, each with a limited number of landmarks. This paper presents a novel method for merging conditionally independent submaps (generated using e.g. EKF-SLAM) by the use of smoothing. By this approach it is possible to build large maps in close to linear time. The approach is demonstrated in two indoor scenarios, where data was collected with a trolley-mounted stereo vision camera.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Bailey, T., Nieto, J., Guivant, J., Stevens, M., Nebot, E.: Consistency of the EKF-SLAM algorithm. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3562–3568 (2006)
Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Dellaert, F., Kaess, M.l.: Square root sam: Simultaneous localization and mapping via square root information smoothing. Int. J. Rob. Res. 25(12), 1181–1203 (2006)
Huang, S., Wang, Z., Dissanayake, G.: Sparse local submap joining filter for building large-scale maps. IEEE Transactions on Robotics 24(5), 1121–1130 (2008)
Huang, S., Wang, Z., Dissanayake, G., Frese, U.: Iterated SLSJF: A sparse local submap joining algorithm with improved consistency. In: 2008 Australiasan Conference on Robotics and Automation, Citeseer (2008)
Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: Incremental smoothing and mapping. IEEE Transactions on Robotics 24(6), 1365–1378 (2008)
Montemerlo, M.: FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem with Unknown Data Association. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (July 2003)
Montemerlo, M.l., Thrun, S., Roller, D., Wegbreit, B.: Fastslam 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In: Proceedings of the 18th International joint Conference on Artificial Intelligence, San Francisco, CA, USA, pp. 1151–1156 (2003)
Ni, K., Steedly, D., Dellaer F.: Tectonic sam: exact, out-of-core, submap-based slam. In: Proc. IEEE International Conference on Robotics and Automation, pp. 1678–1685 (2007)
Piniés, P., Paz, L.M., Tardós, J.D.: CI-Graph: An efficient approach for Large Scale SLAM. In: IEEE International Conference on Robotics and Automation (2009)
Piniés, P., Tardós, J.D.: Large-scale slam building conditionally independent local maps: Application to monocular vision. IEEE Transactions on Robotics 24(5), 1094–1106 (2008)
Thrun, S., Liu, Y., Koller, D., Ng, A.Y., Ghahramani, Z., Durrant-Whyte, H.: Simultaneous Localization and Mapping with Sparse Extended Information Filters. The International Journal of Robotics Research 23(7-8), 693–716 (2004)
Walter, M.R., Eustice, R.M., Leonard, J.J.: Exactly sparse extended information filters for feature-based SLAM. The International Journal of Robotics Research 26(4), 335 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Karlsson, A., Bjärkefur, J., Rydell, J., Grönwall, C. (2011). Smoothing-Based Submap Merging in Large Area SLAM. In: Heyden, A., Kahl, F. (eds) Image Analysis. SCIA 2011. Lecture Notes in Computer Science, vol 6688. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21227-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-21227-7_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21226-0
Online ISBN: 978-3-642-21227-7
eBook Packages: Computer ScienceComputer Science (R0)