Abstract
In this work, the effect of introducing Sparse Principal Component Analysis within the Similarity-based Fisherfaces algorithm is examined. The technique aims at mimicking the human ability to discriminate faces by projecting the faces in a highly discriminative and easy interpretative way. Pixel intensities are used by Sparse Principal Component Analysis and Fisher Linear Discriminant Analysis to assign a one dimensional subspace projection to each person belonging to a reference data set. Experimental results performed in the AR dataset show that Similarity-based Fisherfaces in a sparse version can obtain the same recognition results as the technique in a dense version using only a fraction of the input data. Furthermore, the presented results suggest that using SPCA in the technique offers robustness to occlusions.
Chapter PDF
Similar content being viewed by others
Keywords
References
Kirby, M., Sirovich, L.: Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 103–108 (1990)
Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 711–720 (1997)
Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: Discriminative common vectors for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 4–13 (2005)
Liu, Q., Huang, R., Lu, H., Ma, S.: Face recognition using Kernel-based Fisher discriminant analysis. In: 2002 Proceedings: Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 197–201 (2002)
Baddeley, A.D.: Essentials of Human Memory. Psychology Press, Taylor and Francis (1999)
Gomez, D.D., Fagertun, J., Ersbll, B., Sukno, F.M., Frangi, A.F.: Similarity-based Fisherfaces. Pattern Recognition Letters 30(12), 1110–1116 (2009)
Martinez, A.M., Benavente, R.: The AR Face Database. Technical Report, Computer Vision Center Purdue University (1998)
Zou, H., Hastie, T., Tibshirani, R.: Sparse Principal Component Analysis. Journal of Computational and Graphical Statistics 15, 265–286 (2006)
Journee, M., Nesterov, Y., Richtarik, P., Sepulchre, R.: Generalized Power Method for Sparse Principal Component Analysis. The Journal of Machine Learning Research 11, 517–553 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fagertun, J., Gomez, D.D., Hansen, M.F., Paulsen, R.R. (2011). Sparse Similarity-Based Fisherfaces. In: Heyden, A., Kahl, F. (eds) Image Analysis. SCIA 2011. Lecture Notes in Computer Science, vol 6688. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21227-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-21227-7_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21226-0
Online ISBN: 978-3-642-21227-7
eBook Packages: Computer ScienceComputer Science (R0)