Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Covert Movement in Logical Grammar

  • Chapter
Logic and Grammar

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6700))

  • 633 Accesses

Abstract

We propose a formal reconstruction of the well-known storage-and-retrieval technique for scoping quantifiers and other ‘covertly moved’ semantic operators due to Cooper (1975). In the proposed reconstruction, grammar rules are presented in the familiar term-labelled Gentzen-sequent style of natural deduction. What is new is that, in addition to the usual contexts to the left of the turnstile (recording undischarged pairs of hypotheses, with each pair consisting of a syntactic variable (‘trace’) and a corresponding semantic variable), our typing judgments also include a co-context to the right of the co-turnstile (⊣). A co-context consists of a list of semantic variables, each paired with a quantifier that corresponds to the meaning expressed by a quantified noun phrase whose scope has not yet been specified. Besides the usual logical rules, the grammar also contains rules called Commitment and Responsibility that implement, respectively, storage and retrieval of semantic operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anoun, H., Lecomte, A.: Linear grammars with labels. In: Satta, G., Monachesi, P., Penn, G., Wintner, S. (eds.) Proceedings of Formal Grammar 2006. CSLI, Stanford (2007)

    Google Scholar 

  2. Aoun, J., Li, A.: Wh-elements in situ: syntax or lf? Linguistic Inquiry 24(2), 199–238 (1993)

    Google Scholar 

  3. Bach, E., Partee, B.: Anaphora and semantic structure. In: Krieman, J., Ojeda, A. (eds.) Proceedings the Chicago Linguistic Society, Papers from the Parasession on Pronouns and Anaphora, pp. 1–28 (1980)

    Google Scholar 

  4. Baker, C.: Note on the description of english questions: the role of an abstract question morpheme. Foundations of Language 6, 197–219 (1970)

    Google Scholar 

  5. Barker, C.: Continuations and the nature of quantification. Natural Language Semantics 10 (2002)

    Google Scholar 

  6. Barker, C.: Parasitic scope. Linguistics and Philosophy 30(4), 407–444 (2007)

    Article  Google Scholar 

  7. Benton, N., Bierman, G., de Paiva, V., Hyland, M.: Term assignment for intuitionistic linear logic. Technical Report 262, University of Cambridge (August 1992)

    Google Scholar 

  8. Bernardi, R., Moortgat, M.: Continuation semantics for symmetric categorial grammar. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 53–71. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Buszkowski, W.: The logic of types. In: Srzednicki, J. (ed.) Initiatives in Logic, pp. 180–206. M. Nijhoff, Dordrecht (1987)

    Chapter  Google Scholar 

  10. Carpenter, B.: Type-Logical Semantics. The MIT Press, Cambridge (1997)

    MATH  Google Scholar 

  11. Chomsky, N.: Conditions on rules of grammar. Linguistic Analysis 2, 303–351 (1976)

    Google Scholar 

  12. Chomsky, N.: On wh-movement. In: Culicover, P., Wasow, T., Akmajian, A. (eds.) Formal Syntax, pp. 71–132. Academic Press, New York (1977)

    Google Scholar 

  13. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  14. Chomsky, N.: Lectures on government and binding. Foris, Dordrecht (1981)

    Google Scholar 

  15. Cooper, R.: Montague’s Semantic Theory and Transformational Syntax. PhD thesis, University of Massachusetts at Amherst (1975)

    Google Scholar 

  16. Cooper, R.: Quantification and Syntactic Theory. Reidel, Dordrecht (1983)

    Google Scholar 

  17. Copestake, A., Flickinger, D., Sag, I., Pollard, C.: Minimal recursion semantics: An introduction. Journal of Research on Language and Computation 3, 281–332 (2005)

    Article  Google Scholar 

  18. Culicover, P.W., Jackendoff, R.: Simpler Syntax. Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  19. Curien, P.L., Herbelin, H.: The duality of computation. In: ICFP 2000, pp. 233–243 (2000)

    Google Scholar 

  20. Curry, H., Feys, R.: Combinatory Logic, vol. 1. North-Holland, Amsterdam (1958)

    MATH  Google Scholar 

  21. Gallin, D.: Intensional and Higher Order Modal Logic. North-Holland, Amsterdam (1975)

    MATH  Google Scholar 

  22. Danvy, O., Filinski, A.: Abstracting control. In: 1990 ACM Conference on Lisp and Functional Programming, pp. 151–160. ACM Press, New York (1990)

    Chapter  Google Scholar 

  23. de Groote, P.: Type raising, continuations, and classical logic. In: van Rooy, R., Stokhof, M. (eds.) Proceedings of the Thirteenth Amsterdam Colloquium, Amsterdam, Institute for Logic, Language, and Computation, Universiteit van Amsterdam, pp. 97–101 (2001)

    Google Scholar 

  24. de Groote, P.: Towards abstract categorial grammars. In: Proceedings of ACL, pp. 148–155 (2001)

    Google Scholar 

  25. de Groote, P., Pogodalla, S., Pollard, C.: About parallel and syntactocentric formalisms: what the encoding of convergent grammer into abstract categorial grammer tells us. Fundamenta Informaticae (2009) (submitted)

    Google Scholar 

  26. Felleisen, M.: The theory and practice of first-class prompts. In: POPL 1988, pp. 180–190. ACM Press, New York (1988)

    Google Scholar 

  27. Gabbay, D., de Queiroz, R.: Extending the curry-howard interpretation to linear, relevant, and other resource logics. Journal of Symbolic Logic 57(4), 1319–1365 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gazdar, G.: Unbounded dependencies and coordinate structure. Linguistic Inquiry 12, 155–184 (1981)

    Google Scholar 

  29. Groenendijk, J., Stokhof, M.: Studies on the Semantics of Questions and the Pragmatics of Answers. PhD thesis, University of Amsterdam (1984)

    Google Scholar 

  30. Hendriks, H.: Studied Flexibility: Categories and Types in Syntax and Semantics. PhD thesis, Universiteit van Amsterdam (1993)

    Google Scholar 

  31. Howard, W.A.: The formulæ-as-types notion of construction. In: Hindley, J., Seldin, J. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism., Academic Press, New York (1980)

    Google Scholar 

  32. Huang, C.T.J.: Logical Relations in Chinese and the Theory of Grammar. PhD thesis, MIT (1992)

    Google Scholar 

  33. Jacobson, P.: Towards a variable-free semantics. Linguistics and Philosophy (1999)

    Google Scholar 

  34. Jay, B.: Languages for monoidal categories. Journal of Pure and Applied Algebra 59, 61–85 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Karttunen, L.: Syntax and semantics of questions. Linguistics and Philosophy 1, 3–44 (1977)

    Article  MATH  Google Scholar 

  36. Lambek, J.: Categorial and categorical grammars. In: Oehrle, R., Bach, E., Wheeler, D. (eds.) Categorial Grammars and Natural Language Structures, pp. 297–317. Reidel, Dordrecht (1988)

    Chapter  Google Scholar 

  37. Lambek, J.: The mathematics of sentence structure. American Mathematical Monthly 65(3), 154–170 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lecomte, A., Retoré, C.: Bi-grammars: a logical system for syntax, semantics, and their correspondence. Presented at Formal Grammar 2002, Trento (2002) (unpublished)

    Google Scholar 

  39. Lecomte, A.: Categorial grammar for minimalism. In: Casdio, C., Scott, P., Seely, R. (eds.) Language and Grammar: Studies in Mathematical Linguistics and Natural Language, pp. 163–188. CSLI, Stanford (2005)

    Google Scholar 

  40. Leivant, D., de Queiroz, R. (eds.): WoLLIC 2007. LNCS, vol. 4576. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  41. Mackie, I., Román, L., Abramsky, S.: An internal language for autonomous categories. In: Proceedings of the First Imperial College Department of Computing Workshop on Theory and Formal Methods, pp. 235–246. Springer, London (1993)

    Google Scholar 

  42. May, R.C.: Logical Form: Its Structure and Derivation. MIT Press, Cambridge (1985)

    Google Scholar 

  43. May, R.C.: The Grammar of Quantification. PhD thesis, Massachusetts Institute of Technology. Dept. of Linguistics and Philosophy (1977)

    Google Scholar 

  44. Mints, G.: Closed categories and the theory of proofs. Journal of Soviet Mathematics 15(1), 45–62 (1981); Translated From Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Insititutaim. V.A. Steklova AN SSSR, vol. 68, pp. 83–114 (1977)

    Google Scholar 

  45. Mitchell, J., Scott, P.: Typed lambda models and cartesian closed categories. Contemporary Mathematics 92, 301–316 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  46. Montague, R.: The proper treatment of quantification in ordinary english. In: Thomason, R. (ed.) Formal Philosophy: Selected Papers of Richard Montague, pp. 247–270. Yale University Press, New Haven (1974); Originally published in Hintikka, J., Moravcsik, J., Suppes, P. (eds.) Approaches to Natural Language: Proceedings of the 1970 Stanford Workshop on Grammar and Semantics. Reidel, Dordrecht

    Google Scholar 

  47. Moortgat, M.: Symmetries in natural language syntax and semantics. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 53–71. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  48. Moortgat, M.: Categorial Investigations: Logical and Linguistic Aspects of the Lambek Calculus. Mouton de Gruyter/Foris Publications, Berlin (1991)

    Google Scholar 

  49. Moortgat, M.: Generalized quantifiers and discontinuous type constructors. In: Bunt, H., van Horck, A. (eds.) Discontinuous Constituency, pp. 181–207. De Gruyter, Berlin (1996)

    Google Scholar 

  50. Moortgat, M.: Categorial type logics. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 93–177. Elsevier Science Publishers, Amsterdam (1996)

    Google Scholar 

  51. Morrill, G.V.: Type Logical Grammar Categorial Logic of Signs. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  52. Muskens, R.: Lambdas, Language, and Logic. In: Kruijff, G.J., Oehrle, R. (eds.) Resource Sensitivity in Binding and Anaphora. Studies in Linguistics and Philosophy, pp. 23–54. Kluwer, Dordrecht (2003)

    Chapter  Google Scholar 

  53. Oehrle, R.T.: Term-labeled categorial type systems. Linguistic and Philosophy 17(6), 633–678 (1994)

    Article  Google Scholar 

  54. Parigot, M.: On the computational interpretation of negation. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 472–484. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  55. Parigot, M.: λμ-calculus: an algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  56. Pesetsky, D.: Wh-in-situ: movement and unselective binding. In: Reuland, E., Meulen, A. (eds.) The Representation of (In-) Definiteness, pp. 98–129. MIT Press, Cambridge (1987)

    Google Scholar 

  57. Plotkin, G.: Call-by-name, call-by-value, and the λ-calculus. Theoretical Computer Science 1(2), 125–159 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  58. Pollard, C.: Type-logical hpsg. In: Proceedings of Formal Grammar (2004), http://www.ling.ohio-state.edu/~hana/hog/pollard2004-FG.pdf

  59. Pollard, C.: The logics of overt and covert movement in a relational type-theoretic grammar. Presented at the Fourth Workshop on Lambda Calculus and Formal Grammar, LORIA, Nancy (September 2007), http://www.ling.ohio-state.edu/~hana/hog/pollard2007-lcfg.pdf

  60. Pollard, C.: The logic of pied piping. Presented at Colloque en l’honneur d’Alain Lecomte, Pauillac (November 2007), http://www.ling.ohio-state.edu/~hana/hog/pollard2007-pied.pdf

  61. Pollard, C.: The calculus of responsibility and commitment. Unpublished paper accepted for presentation at the Workshop on Ludics, Dialog, and Interaction, Autrans (May 2008)

    Google Scholar 

  62. Pollard, C.: A parallel derivational architecture for the syntax-semantics interface. Presented at the ESSLLI 2008 Workshop on What Syntax Feeds Semantics, Hamburg (August 2008), http://www.ling.ohio-state.edu/~pollard/cvg/para-slides.pdf

  63. Pollard, C.: What do interrogative sentences refer to? Unpublished paper, Ohio State University, Universitat Rovira i Virgili, and INRIA-Lorraine. Presented at the Workshop on Reference to Abstract Objects, Universitat Pompeu Fabra, Barcelona (March 2008), http://www.ling.ohio-state.edu/~pollard/cvg/absobj.pdf

  64. Pollard, C.: Convergent grammar. In: Slides for ESSLLI 2008, Course, Hamburg (August 2008), http://www.ling.ohio-state.edu/~pollard/cvg/day2.pdf

  65. Pollard, C.: Hyperintensions. Journal of Logic and Computation 18(2), 257–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  66. Pollard, C.: Hyperintensional questions. In: Hodges, W., de Queiroz, R. (eds.) WoLLIC 2008. LNCS (LNAI), vol. 5110, pp. 261–274. Springer, Heidelberg (2008), http://www.ling.ohio-state.edu/~pollard/cvg/wollic08.pdf

  67. Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar. CSLI Publications, Stanford (1994); Distributed by University of Chicago Press

    Google Scholar 

  68. Ranta, A.: Grammatical Framework: A type-theoretical grammar formalism. Journal of Functional Programming 14(2), 145–189 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  69. Shan, C.: A continuation semantics of interrogatives that accounts for baker’s ambiguity. In: Jackson, B. (ed.) Proceedings of Semantics and Linguistic Theory 12, pp. 246–265. Cornell University Press, Ithaca (2002)

    Google Scholar 

  70. Shan, C.: Delimited continuations in natural language: quantification and polar sensitivity. In: Continuation Workshop 2004, Venice (2004)

    Google Scholar 

  71. Steedman, M.: Surface Structure and Interpretation. MIT Press, Cambridge (1996)

    Google Scholar 

  72. van Benthem, J.: The semantics of variety in categorial grammar. Technical Report 83-29, Department of Mathematics, Simon Fraser University, Vancouver (1983); Reprinted in Buszkowski, W., van Benthem, J., Marciszewski, W. (eds.) Categorial Grammar, pp. 37–55. John Benjamins, Amsterdam

    Google Scholar 

  73. Wansing, H.: ‘formulas-as-types’ for a hierarchy of sublogics of intuitionistic proposiitonal logic. In: Pearce, D.J., Wansing, H. (eds.) All-Berlin 1990. LNCS (LNAI), vol. 619, pp. 125–145. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pollard, C. (2011). Covert Movement in Logical Grammar. In: Pogodalla, S., Quatrini, M., Retoré, C. (eds) Logic and Grammar. Lecture Notes in Computer Science(), vol 6700. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21490-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21490-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21489-9

  • Online ISBN: 978-3-642-21490-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics