Abstract
In this paper, a multi-objective evolutionary algorithm based on gene expression programming (MOGEP) is proposed to construct scheduling rules (SRs) for dynamic single-machine scheduling problem (DSMSP) with job release dates. In MOGEP a fitness assignment scheme, diversity maintaining strategy and elitist strategy are incorporated on the basis of original GEP. Results of simulation experiments show that the MOGEP can construct effective SRs which contribute to optimizing multiple scheduling measures simultaneously.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balas, E.: Machine scheduling via disjunctive graphs: an implicit enumeration algorithm. Oper. Res. 17, 941–957 (1969)
Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)
Laguna, M., Barnes, J., Glover, F.: Tabu search methods for a single machine scheduling problem. J. Intell. Mauf. 2, 63–74 (1991)
Jakobović, D., Budin, L.: Dynamic Scheduling with Genetic Programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 73–84. Springer, Heidelberg (2006)
Atlan, L., Bonnet, J., Naillon, M.: Learning Distributed Reactive Strategies by Genetic Programming for the General Job Shop Problem. In: 7th Annual Florida Artificial Intelligence Research Symposium. IEEE Press, Florida (1994)
Miyashita, K.: Job-shop Scheduling with Genetic Programming. In: Genetic and Evolutionary Computation Conference, pp. 505–512. Morgan Kaufmann, San Fransisco (2000)
Nie, L., Shao, X.Y., Gao, L., Li, W.D.: Evolving Scheduling Rules with Gene Expression Programming for Dynamic Single-machine Scheduling Problems. Int. J. Adv. Manuf. Tech. 50, 729–747 (2010)
Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE T. Evolut. Comput. 3(4), 257–271 (1999)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Nondominated Sorting Genetic Algorithm for Mmulti-objective Optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature – PPSN VI, pp. 849–858. Springer, Berlin (2000)
Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: 5th International Conference on Genetic Algorithms, pp. 416–423. Morgan Kaufmann, California (1993)
Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In: 1st IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Computation, pp. 82–87. IEEE Press, New Jersey (1994)
Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evol. Comput. 2(3), 221–248 (1994)
Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evol. Comput. 8(2), 173–195 (2000)
Kacem, I., Hammadi, S., Borne, P.: Pareto-optimality Approach for Flexible Job-shop Scheduling Problems: Hybridization of Evolutionary Algorithms and Fuzzy Logic. Math. Comput. Simulat. 60, 245–276 (2002)
Ferreira, C.: Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex System 13(2), 87–129 (2001)
Ferreira, C.: Discovery of the Boolean Functions to the Best Density-Classification Rules Using Gene Expression Programming. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 50–60. Springer, Heidelberg (2002)
Zou, C., Nelson, P.C., Xiao, W., Tirpak, T.M.: Discovery of Classification Rules by Using Gene Expression Programming. In: International Conference on Artificial Intelligence, Las Vegas, pp. 1355–1361 (2002)
Zuo, J., Tang, C., Li, C., Yuan, C., Chen, A.: Time Series Prediction Based on Gene Expression Programming. In: Li, Q., Wang, G., Feng, L. (eds.) WAIM 2004. LNCS, vol. 3129, pp. 55–64. Springer, Heidelberg (2004)
Chen, Y., Tang, C., Zhu, J.: Clustering without Prior Knowledge Based on Gene Expression Programming. In: 3rd International Conference on Natural Computation, pp. 451–455 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nie, L., Gao, L., Li, P., Wang, X. (2011). Multi-Objective Optimization for Dynamic Single-Machine Scheduling. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds) Advances in Swarm Intelligence. ICSI 2011. Lecture Notes in Computer Science, vol 6729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21524-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-21524-7_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21523-0
Online ISBN: 978-3-642-21524-7
eBook Packages: Computer ScienceComputer Science (R0)