Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using Population Based Algorithms for Initializing Nonnegative Matrix Factorization

  • Conference paper
Advances in Swarm Intelligence (ICSI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6729))

Included in the following conference series:

Abstract

The nonnegative matrix factorization (NMF) is a bound-constrained low-rank approximation technique for nonnegative multivariate data. NMF has been studied extensively over the last years, but an important aspect which only has received little attention so far is a proper initialization of the NMF factors in order to achieve a faster error reduction. Since the NMF objective function is usually non-differentiable, discontinuous, and may possess many local minima, heuristic search algorithms are a promising choice as initialization enhancers for NMF.

In this paper we investigate the application of five population based algorithms (genetic algorithms, particle swarm optimization, fish school search, differential evolution, and fireworks algorithm) as new initialization variants for NMF. Experimental evaluation shows that some of them are well suited as initialization enhancers and can reduce the number of NMF iterations needed to achieve a given accuracy. Moreover, we compare the general applicability of these five optimization algorithms for continuous optimization problems, such as the NMF objective function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, D.D., Seung, H.S.: Learning parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  MATH  Google Scholar 

  2. Berry, M.W., Browne, M., Langville, A.N., Pauca, P.V., Plemmons, R.J.: Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics & Data Analysis 52(1), 155–173 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boutsidis, C., Gallopoulos, E.: SVD based initialization: A head start for nonnegative matrix factorization. Pattern Recogn. 41(4), 1350–1362 (2008)

    Article  MATH  Google Scholar 

  4. Wild, S.M., Curry, J.H., Dougherty, A.: Improving non-negative matrix factorizations through structured initialization. Patt. Recog. 37(11), 2217–2232 (2004)

    Article  Google Scholar 

  5. Xue, Y., Tong, C.S., Chen, Y., Chen, W.: Clustering-based initialization for non-negative matrix factorization. Appl. Math. & Comput. 205(2), 525–536 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Kim, H., Park, H.: Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM J. Matrix Anal. Appl. 30, 713–730 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Janecek, A.G., Gansterer, W.N.: Utilizing nonnegative matrix factorization for e-mail classification problems. In: Berry, M.W., Kogan, J. (eds.) Survey of Text Mining III: Application and Theory. John Wiley & Sons, Inc., Chichester (2010)

    Google Scholar 

  8. Stadlthanner, K., Lutter, D., Theis, F., et al.: Sparse nonnegative matrix factorization with genetic algorithms for microarray analysis. In: IJCNN 2007: Proceedings of the International Joint Conference on Neural Networks, pp. 294–299 (2007)

    Google Scholar 

  9. Snásel, V., Platos, J., Krömer, P.: Developing genetic algorithms for boolean matrix factorization. In: DATESO 2008 (2008)

    Google Scholar 

  10. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19(10), 2756–2779 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Schmidt, M.N., Laurberg, H.: Non-negative matrix factorization with Gaussian process priors. Comp. Intelligence and Neuroscience (1), 1–10 (2008)

    Google Scholar 

  12. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley Longman, Amsterdam (1989)

    MATH  Google Scholar 

  13. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  14. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution A Practical Approach to Global Optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  15. Filho, C.J.A.B., de Lima Neto, F.B., Lins, A.J.C.C., Nascimento, A.I.S., Lima, M.P.: Fish school search. In: Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation. SCI, vol. 193, pp. 261–277. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Janecek, A.G., Tan, Y.: Feeding the fish – weight update strategies for the fish school search algorithm. To appear in Proceedings of ICSI 2011: 2nd International Conference on Swarm Intelligence (2011)

    Google Scholar 

  17. Tan, Y., Zhu, Y.: Fireworks algorithm for optimization. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 355–364. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Berry, M.W., Drmac, Z., Jessup, E.R.: Matrices, vector spaces, and information retrieval. SIAM Review 41(2), 335–362 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pedersen, M.E.H.: SwarmOps - numerical & heuristic optimization for matlab (2010), http://www.hvass-labs.org/projects/swarmops/matlab

  20. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Swarm Intelligence Symposium, SIS 2007, pp. 120–127. IEEE, Los Alamitos (2007)

    Chapter  Google Scholar 

  21. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms, 2nd edn. John Wiley & Sons, Inc., Chichester (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Janecek, A., Tan, Y. (2011). Using Population Based Algorithms for Initializing Nonnegative Matrix Factorization. In: Tan, Y., Shi, Y., Chai, Y., Wang, G. (eds) Advances in Swarm Intelligence. ICSI 2011. Lecture Notes in Computer Science, vol 6729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21524-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21524-7_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21523-0

  • Online ISBN: 978-3-642-21524-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics