Abstract
In this paper, we investigate the recoverable robust knapsack problem, where the uncertainty of the item weights follows the approach of Bertsimas and Sim [3, 4]. In contrast to the robust approach, a limited recovery action is allowed, i.e., up to k items may be removed when the actual weights are known. This problem is motivated by the assignment of traffic nodes to antennas in wireless network planning. Starting from an exponential min-max optimization model, we derive an integer linear programming formulation of quadratic size. In a preliminary computational study, we evaluate the gain of recovery using realistic planning data.
This work was supported by the Federal Ministry of Education and Research (BMBF grant 03MS616A, project ROBUKOM - Robust Communication Networks, www.robukom.de).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aissi, H., Bazgan, C., Vanderpooten, D.: Min-max and min-max regret versions of some combinatorial optimization problems: a survey (2007), http://hal.archives-ouvertes.fr/docs/00/15/86/52/PDF/AN7LAMSADE_1-32.pdf
Bellman, R.: Notes on the theory of dynamic programming IV - maximization over discrete sets. Naval Research Logistics Quarterly 3, 67–70 (1956)
Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Mathematical Programming Ser. B 98, 49–71 (2003)
Bertsimas, D., Sim, M.: The Price of Robustness. Operations Research 52(1), 35–53 (2004)
Büsing, C.: Recoverable Robustness in Combinatorial Optimization. Ph.D. thesis, Technische Universität Berlin (to appear, 2011)
Büsing, C., Koster, A.M.C.A., Kutschka, M.: Recoverable robust knapsacks: the discrete scenario case. Optimization Letters, Online First (2011), http://dx.doi.org/10.1007/s11590-011-0307-1
Claßen, G., Koster, A.M.C.A., Schmeink, A.: Planning wireless networks with demand uncertainty using robust optimization. Optimization Online Eprint server (2011), http://www.optimization-online.org/DB_HTML/2011/03/2954.html
Engels, A., Reyer, M., Mathar, R.: Profit-oriented combination of multiple objectives for planning and configuration of 4G multi-hop relay networks. In: 7th International Symposium on Wireless Communication Systems (IEEE ISWCS), York, UK, pp. 330–334 (2010)
ILOG: CPLEX version 12.2 (2010), http://www.ibm.com
Karp, R.: Reducibility among combinatorial problems. Complexity of Computer Computations, pp. 85–103 (1972)
Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)
Klopfenstein, O., Nace, D.: Valid inequalities for a robust knapsack polyhedron - Application to the robust bandwidth packing problem. Networks (to appear, 2010)
Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations (1990)
Wolsey, L.A.: Integer Programming. Wiley, Chichester (1998)
Yu, G.: On the max-min 0-1 knapsack problem with robust optimization applications. Operations Research 44, 407–415 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Büsing, C., Koster, A.M.C.A., Kutschka, M. (2011). Recoverable Robust Knapsacks: Γ-Scenarios. In: Pahl, J., Reiners, T., Voß, S. (eds) Network Optimization. INOC 2011. Lecture Notes in Computer Science, vol 6701. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21527-8_65
Download citation
DOI: https://doi.org/10.1007/978-3-642-21527-8_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21526-1
Online ISBN: 978-3-642-21527-8
eBook Packages: Computer ScienceComputer Science (R0)