Abstract
In the current paper we consider the task of object classification in wireless sensor networks. Due to restricted battery capacity, minimizing the energy consumption is a main concern in wireless sensor networks. Assuming that each feature needed for classification is acquired by a sensor, a sequential classifier combination approach is proposed that aims at minimizing the number of features used for classification while maintaining a given correct classification rate. In experiments with data from the UCI repository, the feasibility of this approach is demonstrated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Inc., Hoboken (2004)
Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)
Rahman, A.F.R., Fairhurst, M.C.: Serial Combination of Multiple Experts: A Unified Evaluation. Pattern Anal. Appl. 2(4), 292–311 (1999)
Zhang, Z., Zhou, S., Zhou, A.: Sequential Classifiers Combination for Text Categorization: An Experimental Study. In: Li, Q., Wang, G., Feng, L. (eds.) WAIM 2004. LNCS, vol. 3129, pp. 509–518. Springer, Heidelberg (2004)
Chellapilla, K., Shilman, M., Simard, P.: Combining Multiple Classifiers for Faster Optical Character Recognition. In: Bunke, H., Spitz, A.L. (eds.) DAS 2006. LNCS, vol. 3872, pp. 358–367. Springer, Heidelberg (2006)
Viola, P., Jones, M.: Robust Real-Time Face Detection. Int. Journal of Computer Vision 57(2), 137–154 (2004)
Capelli, R., Maio, D., Maltoni, D., Nanni, L.: A Two-Stage Fingerprint Classification System. In: Proc. of the ACM SIGMM Workshop on Biometrics Methods and Applications, pp. 95–99. ACM, New York (2003)
Last, M., Bunke, H., Kandel, A.: A Feature-Based Serial Approach to Classifier Combination. Pattern Analysis and Applications 5, 385–398 (2002)
Xiao, Y., Chen, H., Li, F.: Handbook on Sensor Networks, World Scientific Publishing Co., Singapore (2010)
Duarte, M.F., Hu, Y.H.: Vehicle Classification in Distributed Sensor Networks. Journal of Parallel and Distributed Computing 64(7), 826–838 (2004)
Brooks, R.R., Ramanathan, P., Sayeed, A.M.: Distributed Target Classification and Tracking in Sensor Networks. Proceedings of the IEEE 91(8), 1163–1171 (2003)
Meesookho, C., Narayanan, S., Raghavendra, C.S.: Collaborative Classification Applications in Sensor Networks. In: IEEE Sensor Array and Multichannel Signal Processing Workshop Proceedings, pp. 370–374 (2002)
Wang, X., Bi, D., Ding, L., Wang, S.: Agent Collaborative Target Localization and Classification in Wireless Sensor Networks. Sensors 7, 1359–1386 (2007)
Sun, Y., Qi, H.: Dynamic Target Classification in Wireless Sensor Networks. In:19th International Conference Pattern Recognition, ICPR 2008 (2008)
Gu, L., et al.: Lightweight Detection and Classification for Wireless Sensor Networks in Realistic Environments. In: Proc. of the Third Int. Conference on Embedded Networked Sensor Systems, ACM, New York (2005)
Wang, L., Xiao, Y.: A Survey of Energy-Efficient Scheduling Mechanisms in Sensor Networks. Mobile Networks and Applications 11, 723–740 (2006)
Chow, C.K.: On Optimum Recognition Error and Reject Trade-Off. IEEE Transactions on Information Theory, IT 16(1), 41–46 (1970)
Fumera, G., Roli, F., Giacinto, G.: Reject Option with Multiple Thresholds. Pattern Recognition 33(12), 2099–2101 (2000)
Hanczar, B., Dougherty, E.R.: Classification with Reject Option in Gene Expression Data. Bioinformatics 24(17), 1889–1895 (2008)
Kira, K., Rendell, L.A.: The Feature Selection Problem Traditional Methods and a new Algorithm. In: Proceedings of the tenth National Conference on Artificial Intelligence, pp. 129–134. AAAI Press, Menlo Park (1992)
Pudil, P., Novovicova, J., Kittler, J.: Floating Search Methods in Feature Selection. Pattern Recognition Letters 15(11), 1119–1125 (1994)
Csirik, J., Bunke, H.: Feature Selection and Ranking for Pattern Classification in Wireless Sensor Networks. In: Csirik, J., Bunke, H. (eds.) Pattern Recognition, Machine Intelligence and Biometrics Expanding Frontiers, Springer, Heidelberg (2011)
Zappi, P., Lombriser, C., Farelle, E., Roggen, D., Benini, L., Troester, G.: Experiences with Experiments in Ambient Intelligence Environments. In: IADIS Int. Conference Wireless Applications and Computing (2009)
Intille, S., Larson, K., Tapia, E.M., Beaudin, J.S., Kaushik, P., Nawyn, J., Rockinson, R.: Using a Live-In Laboratory for Ubiquitous Computing Research. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 349–365. Springer, Heidelberg (2006)
Frank, A., Asuncion, A.U.: Machine Learning Repository. University of California, School of Information and Computer Science, Irvine CA (2010), http://archive.ics.uci.edu/ml
Gyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.): Feature Extraction, Foundations and Applications. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Csirik, J., Bertholet, P., Bunke, H. (2011). Sequential Classifier Combination for Pattern Recognition in Wireless Sensor Networks. In: Sansone, C., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2011. Lecture Notes in Computer Science, vol 6713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21557-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-21557-5_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21556-8
Online ISBN: 978-3-642-21557-5
eBook Packages: Computer ScienceComputer Science (R0)