Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Use of Rough Set Methods in Knowledge Discovery in Databases

Tutorial Abstract

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6743))

Abstract

Knowledge Discovery in Databases (KDD) is a process involving many stages. One of them is usually Data Mining, i.e., the sequence of operations that leads to creation (discovery) of new, interesting and non-trivial patterns from data. Under closer examination one can identify several interconnected smaller steps that together make it possible to go from the original low-level data set(s) to high-level representation and visualisation of knowledge contained in it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  2. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wikipedia - the free Encyclopedia: Rough Set (2011), http://en.wikipedia.org/wiki/Rough_set

  4. Grochowalski, P., Suraj, Z.: RSDS - the Rough Set Database System - a bibliographic database on wide aspects of rough sets. WWW Page (2009), http://rsds.univ.rzeszow.pl/

  5. Bazan, J.G., Latkowski, R., Szczuka, M.S.: Missing template decomposition method and its implementation in rough set exploration system. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 254–263. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Nguyen, H.S.: Approximate boolean reasoning: Foundations and applications in data mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 334–506. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough set algorithms in classification problem. In: Rough Set Methods and Applications, pp. 49–88. Physica-Verlag, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Kotłowski, W., Dembczyński, K., Greco, S., Słowinski, R.: Stochastic dominance-based rough set model for ordinal classification. Information Sciences 178, 4019–4037 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grzymała-Busse, J.W., Rząasa, W.: A local version of the MLEM2 algorithm for rule induction. Fundamenta Informaticae 100, 99–116 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Øhrn, A.: ROSETTA Development Team: The ROSETTA software toolkit. WWW Page (2009), http://www.lcb.uu.se/tools/rosetta/

  11. Bazan, J., Szczuka, M.: The rough set exploration system - RSES. WWW Page (2006), http://logic.mimuw.edu.pl/~rses

  12. Wojna, A.: The Rseslib 3.0 library. WWW Page (2011), http://rsproject.mimuw.edu.pl

  13. Laboratory of Intelligent Decision Support Systems, Poznań Univ. of Technology: Software and other projects. WWW Page (2011), http://idss.cs.put.poznan.pl/site/software.html

  14. Infobright, Inc.: Infobright Community Edition (ICE). WWW Page (2011), http://infobright.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szczuka, M. (2011). The Use of Rough Set Methods in Knowledge Discovery in Databases. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2011. Lecture Notes in Computer Science(), vol 6743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21881-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21881-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21880-4

  • Online ISBN: 978-3-642-21881-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics