Abstract
Knowledge Discovery in Databases (KDD) is a process involving many stages. One of them is usually Data Mining, i.e., the sequence of operations that leads to creation (discovery) of new, interesting and non-trivial patterns from data. Under closer examination one can identify several interconnected smaller steps that together make it possible to go from the original low-level data set(s) to high-level representation and visualisation of knowledge contained in it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pawlak, Z.: Rough Sets - Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177, 3–27 (2007)
Wikipedia - the free Encyclopedia: Rough Set (2011), http://en.wikipedia.org/wiki/Rough_set
Grochowalski, P., Suraj, Z.: RSDS - the Rough Set Database System - a bibliographic database on wide aspects of rough sets. WWW Page (2009), http://rsds.univ.rzeszow.pl/
Bazan, J.G., Latkowski, R., Szczuka, M.S.: Missing template decomposition method and its implementation in rough set exploration system. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS (LNAI), vol. 4259, pp. 254–263. Springer, Heidelberg (2006)
Nguyen, H.S.: Approximate boolean reasoning: Foundations and applications in data mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 334–506. Springer, Heidelberg (2006)
Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough set algorithms in classification problem. In: Rough Set Methods and Applications, pp. 49–88. Physica-Verlag, Heidelberg (2000)
Kotłowski, W., Dembczyński, K., Greco, S., Słowinski, R.: Stochastic dominance-based rough set model for ordinal classification. Information Sciences 178, 4019–4037 (2008)
Grzymała-Busse, J.W., Rząasa, W.: A local version of the MLEM2 algorithm for rule induction. Fundamenta Informaticae 100, 99–116 (2010)
Øhrn, A.: ROSETTA Development Team: The ROSETTA software toolkit. WWW Page (2009), http://www.lcb.uu.se/tools/rosetta/
Bazan, J., Szczuka, M.: The rough set exploration system - RSES. WWW Page (2006), http://logic.mimuw.edu.pl/~rses
Wojna, A.: The Rseslib 3.0 library. WWW Page (2011), http://rsproject.mimuw.edu.pl
Laboratory of Intelligent Decision Support Systems, Poznań Univ. of Technology: Software and other projects. WWW Page (2011), http://idss.cs.put.poznan.pl/site/software.html
Infobright, Inc.: Infobright Community Edition (ICE). WWW Page (2011), http://infobright.org
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Szczuka, M. (2011). The Use of Rough Set Methods in Knowledge Discovery in Databases. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2011. Lecture Notes in Computer Science(), vol 6743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21881-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-21881-1_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21880-4
Online ISBN: 978-3-642-21881-1
eBook Packages: Computer ScienceComputer Science (R0)