Abstract
In this paper, we address the problem of automatic identification of instruments in audio records, in a frame-by-frame manner. Random forests have been chosen as a classifier. Training data represent sounds of selected instruments which originate from three commonly used repositories, namely McGill University Master Samples, The University of IOWA Musical Instrument Samples, and RWC, as well as from recordings by one of the authors. Testing data represent audio records especially prepared for research purposes, and then carefully labeled (annotated). The experiments on identification of instruments on frame-by-frame basis and the obtained results are presented and discussed in the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001), http://www.stat.berkeley.edu/~breiman/RandomForests/cc_papers.htm
Brown, J.C.: Computer identification of musical instruments using pattern recognition with cepstral coefficients as features. J. Acoust. Soc. Am. 105, 1933–1941 (1999)
Eggink, J., Brown, G.J.: Application of missing feature theory to the recognition of musical instruments in polyphonic audio. In: ISMIR (2003)
Foote, J.: An Overview of Audio Information Retrieval. Multimedia Systems 7(1), 2–11 (1999)
Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC Music Database: Music Genre Database and Musical Instrument Sound Database. In: Proceedings of ISMIR, pp. 229–230 (2003)
Herrera, P., Amatriain, X., Batlle, E., Serra, X.: Towards instrument segmentation for music content description: a critical review of instrument classification techniques. In: International Symposium on Music Information Retrieval, ISMIR (2000)
Herrera-Boyer, P., Klapuri, A., Davy, M.: Automatic Classification of Pitched Musical Instrument Sounds. In: Klapuri, A., Davy, M. (eds.) Signal Processing Methods for Music Transcription, Springer Science+Business Media LLC (2006)
ISO: MPEG-7 Overview, http://www.chiariglione.org/mpeg/
Klapuri, A., Davy, M. (eds.): Signal Processing Methods for Music Transcription. Springer, New York (2006)
Kostek, B.: Musical Instrument Classification and Duet Analysis Employing Music Information Retrieval Techniques. Proc. IEEE 92(4), 712–729 (2004)
Kubera, E.: The role of temporal attributes in identifying instruments in polytimbral music recordings (in Polish). Ph.D. dissertation, Polish-Japanese Institute of Information Technology (2010)
Kubera, E.z., Wieczorkowska, A., Raś, Z., Skrzypiec, M.: Recognition of instrument timbres in real polytimbral audio recordings. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6322, pp. 97–110. Springer, Heidelberg (2010)
Kursa, M.B., Kubera, E.z., Rudnicki, W.R., Wieczorkowska, A.A.: Random musical bands playing in random forests. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 580–589. Springer, Heidelberg (2010)
Kursa, M., Rudnicki, W., Wieczorkowska, A., Kubera, E.z., Kubik-Komar, A.: Musical instruments in random forest. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 281–290. Springer, Heidelberg (2009)
Kursa, M.B., Jankowski, A., Rudnicki, W.R.: Boruta: A System for Feature Selection. Fundamenta Informaticae 101, 271–285 (2010)
Kursa, M.B., Rudnicki, W.R.: Feature Selecion with the Boruta Package. J. Stat. Soft. 36, 1–13 (2010)
Livshin, A.A., Rodet, X.: Musical Instrument Identification in Continuous Recordings. In: Proc. DAFX 2004 (2004)
Müller, M.: Information retrieval for music and motion. Springer, Heidelberg (2007)
MIDOMI, http://www.midomi.com/
Niewiadomy, D., Pelikant, A.: Implementation of MFCC vector generation in classification context. J. Applied Computer Science 16(2), 55–65 (2008)
Opolko, F., Wapnick, J.: MUMS – McGill University Master Samples. CD’s (1987)
Rudnicki, R.: Jazz band. Recording and mixing. Arrangements by M. Postle. Clarinet - J. Murgatroyd, trumpet - M. Postle, harmonica, trombone - N. Noutch, sousaphone - J. M. Lancaster (2010)
Segal, M.: Machine Learning Benchmarks and Random Forest Regression. Center for Bioinformatics & Molecular Biostatistics, http://repositories.cdlib.org/cbmb/bench_rf_regn/
Shen, J., Shepherd, J., Cui, B., Liu, L. (eds.): Intelligent Music Information Systems: Tools and Methodologies. Information Science Reference, Hershey (2008)
Sony Ericsson: TrackID, http://www.sonyericsson.com/trackid/
The University of IOWA Electronic Music Studios: Musical Instrument Samples, http://theremin.music.uiowa.edu/MIS.html
Wieczorkowska, A.A., Kubera, E.: Identification of a dominating instrument in polytimbral same-pitch mixes using SVM classifiers with non-linear kernel. J. Intell. Inf. Syst. 34(3), 275–303 (2010)
Zhang, X., Marasek, K., Raś, Z.W.: Maximum Likelihood Study for Sound Pattern Separation and Recognition. In: 2007 International Conference on Multimedia and Ubiquitous Engineering, MUE 2007, pp. 807–812. IEEE, Los Alamitos (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kubera, E., Kursa, M.B., Rudnicki, W.R., Rudnicki, R., Wieczorkowska, A.A. (2011). All That Jazz in the Random Forest. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., RaÅ›, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2011. Lecture Notes in Computer Science(), vol 6804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21916-0_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-21916-0_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21915-3
Online ISBN: 978-3-642-21916-0
eBook Packages: Computer ScienceComputer Science (R0)