Abstract
We introduce the Inhomogeneous Simultaneous Approximation Problem (ISAP), an old problem from the field of analytic number theory. Although the Simultaneous Approximation Problem (SAP) is already known in cryptography, it has mainly been considered in its homogeneous instantiation for attacking schemes. We take a look at the hardness and applicability of ISAP, i.e., the inhomogeneous variant, for designing schemes.
More precisely, we define a decisional problem related to ISAP, called DISAP, and show that it is NP-complete. With respect to its hardness, we review existing approaches for solving related problems and give suggestions for the efficient generation of hard instances. Regarding the applicability, we describe as a proof of concept a bit commitment scheme where the hiding property is directly reducible to DISAP. An implementation confirms its usability in principle (e.g., size of one commitment is 6273 bits and execution time is in the milliseconds).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baldwin, P.R.: A convergence exponent for multidimensional continued-fraction algorithms. Journal of Statistical Physics 66(5/6), 1507–1526 (1992)
Bernstein, L.: The Jacobi-Perron algorithm, it’s theory and application. Lecture Notes in Mathematics, vol. 207. Springer, Heidelberg (1971)
Brentjes, A.J.: Multi-dimensional continued fraction algorithms. Mathematical Centre Tracts 145 (1981)
Elsner, C., Schmidt, M.: KronCrypt - a new symmetric cryptosystem based on Kronecker’s approximation theorem. Cryptology ePrint Archive, Report 2009/416 (2009), http://eprint.iacr.org/
Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13 (2007)
Gärtner, R.: Zur Geometrie des Jacobi-Perron Algorithmus. Arch. Math. 39, 134–146 (1982)
Goldreich, O., Micciancio, D., Safra, S., Seifert, J.-P.: Approximating shortest lattice vectors is not harder than approximating closest lattice vectors. Information Processing Letters 71(2), 55–61 (1999)
Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 3rd edn. Clarendon Press, Oxford (1954)
Isselhorst, H.: The use of fractions in public-key cryptosystems. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 47–55. Springer, Heidelberg (1990)
Jacobi, C.G.J.: Allgemeine Theorie der kettenbruchähnlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird. Journal Für Die Reine und Angewandte Mathematik (Crelle’s Journal) 69, 29–64 (1868)
Just, B.: Generalizing the continued fraction algorithm to arbitrary dimensions. SIAM Journal on Computing 21, 909–926 (1992)
Estes, D., Adleman, L.M., Kompella, K., McCurley, K.S., Miller, G.L.: Breaking the Ong-Schnorr-Shamir signature scheme for quadratic number fields. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 3–13. Springer, Heidelberg (1986)
Lagarias, J.C.: The computational complexity of simultaneous diophantine approximation problems. SIAM J. Comput. 14(1), 196–209 (1985)
Lenstra, A.K., Lenstra Jr., H.W., Lovasz, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515–534 (1982)
Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8(4), 538–548 (1983)
Keng, H.L.: Introduction to number theory, 5th edn. Springer, Heidelberg (1982)
Nguyen, P.Q., Valle, B.: The LLL Algorithm. Survey and Applications. In: Information Security and Cryptography, Springer, Heidelberg (2010)
Perron, O.: Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64, 1–76 (1907)
Regev, O.: New lattice-based cryptographic constructions. J. ACM 51(6), 899–942 (2004)
Rieger, G.J.: Zahlentheorie. Vandenhoeck & Ruprecht, Göttingen (1976)
Rössner, C., Seifert, J.-P.: Approximating good simultaneous diophantine approximations is almost NP-hard. In: Penczek, W., Szałas, A. (eds.) MFCS 1996. LNCS, vol. 1113, pp. 494–505. Springer, Heidelberg (1996)
Schmidt, W.: Diophantine approximations. Springer, Berlin (1980)
Schnorr, C.-P.: Factoring integers and computing discrete logarithms via diophantine approximation. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 281–293. Springer, Heidelberg (1991)
Schweiger, F.: The metrical theory of Jacobi-Perron algorithm. Lecture Notes in Mathematics, vol. 334. Springer, Heidelberg (1973)
Schweiger, F.: Multidimensional continued fractions. Oxford University Press, Oxford (2000)
Schweiger, F.: Was leisten mehrdimensionale Kettenbrüche? Mathematische Semesterberichte 53, 231–244 (2006)
Seifert, J.-P.: Using fewer qubits in Shor’s factorization algorithm via simultaneous diophantine approximation. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 319–327. Springer, Heidelberg (2001)
Shamir, A.: A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem. In: SFCS 1982: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 145–152. IEEE Computer Society, Washington, DC, USA (1982)
Stern, J., Toffin, P.: Cryptanalysis of a public-key cryptosystem based on approximations by rational numbers. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 313–317. Springer, Heidelberg (1991)
Szekeres, C.: Multidimensional continued fractions. Ann. Univ. Sci. Budap. Eötös, Sect. Math. 13, 113–140 (1980)
van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)
Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on Information Theory 36, 553–558 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Armknecht, F., Elsner, C., Schmidt, M. (2011). Using the Inhomogeneous Simultaneous Approximation Problem for Cryptographic Design. In: Nitaj, A., Pointcheval, D. (eds) Progress in Cryptology – AFRICACRYPT 2011. AFRICACRYPT 2011. Lecture Notes in Computer Science, vol 6737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21969-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-21969-6_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21968-9
Online ISBN: 978-3-642-21969-6
eBook Packages: Computer ScienceComputer Science (R0)