Abstract
We develop a new analysis for the length of controlled bad sequences in well-quasi-orderings based on Higman’s Lemma. This leads to tight multiply-recursive upper bounds that readily apply to several verification algorithms for well-structured systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of programs with well quasi-ordered domains. Inform. and Comput. 160, 109–127 (2000)
Buchholz, W., Cichoń, E.A., Weiermann, A.: A uniform approach to fundamental sequences and hierarchies. Math. Logic Quart. 40, 273–286 (1994)
Chambart, P., Schnoebelen, P.: Post embedding problem is not primitive recursive, with applications to channel systems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 265–276. Springer, Heidelberg (2007)
Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel systems. In: Proc. LICS 2008, pp. 205–216. IEEE, Los Alamitos (2008)
Chambart, P., Schnoebelen, P.: Pumping and counting on the Regular Post Embedding Problem. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 64–75. Springer, Heidelberg (2010)
Cichoń, E.A.: Ordinal complexity measures. In: Conference on Proofs and Computations in Honour of Stan Wainer on the Occasion of his 65th Birthday (2009)
Cichoń, E.A., Tahhan Bittar, E.: Ordinal recursive bounds for Higman’s Theorem. Theor. Comput. Sci. 201, 63–84 (1998)
Clote, P.: On the finite containment problem for Petri nets. Theor. Comput. Sci. 43, 99–105 (1986)
Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and primitive-recursive bounds with Dickson’s Lemma. In: Proc. LICS 2011. IEEE, Los Alamitos (to appear, 2011); arXiv:1007.2989 (cs.LO), http://arxiv.org/abs/1007.2989
Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256, 63–92 (2001)
Henzinger, T.A., Majumdar, R., Raskin, J.F.: A classification of symbolic transition systems. ACM Trans. Comput. Logic 6, 1–32 (2005)
de Jongh, D.H.J., Parikh, R.: Well-partial orderings and hierarchies. Indag. Math. 39, 195–207 (1977)
Kruskal, J.B.: The theory of well-quasi-ordering: A frequently discovered concept. J. Comb. Theory A 13, 297–305 (1972)
Löb, M., Wainer, S.: Hierarchies of number theoretic functions, I. Arch. Math. Logic 13, 39–51 (1970)
McAloon, K.: Petri nets and large finite sets. Theor. Comput. Sci. 32, 173–183 (1984)
Moser, G., Weiermann, A.: Relating derivation lengths with the slow-growing hierarchy directly. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 296–310. Springer, Heidelberg (2003)
Schnoebelen, P.: Lossy counter machines decidability cheat sheet. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 51–75. Springer, Heidelberg (2010)
Touzet, H.: Propriétés combinatoires pour la terminaison de systèmes des réécriture. Thèse de doctorat, Université de Nancy 1, France (September 1997)
Touzet, H.: A characterisation of multiply recursive functions with Higman’s Lemma. Inform. and Comput. 178, 534–544 (2002)
Weiermann, A.: Complexity bounds for some finite forms of Kruskal’s Theorem. J. Symb. Comput. 18, 463–488 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schmitz, S., Schnoebelen, P. (2011). Multiply-Recursive Upper Bounds with Higman’s Lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22012-8_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-22012-8_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22011-1
Online ISBN: 978-3-642-22012-8
eBook Packages: Computer ScienceComputer Science (R0)