Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multiply-Recursive Upper Bounds with Higman’s Lemma

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6756))

Included in the following conference series:

Abstract

We develop a new analysis for the length of controlled bad sequences in well-quasi-orderings based on Higman’s Lemma. This leads to tight multiply-recursive upper bounds that readily apply to several verification algorithms for well-structured systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of programs with well quasi-ordered domains. Inform. and Comput. 160, 109–127 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Buchholz, W., Cichoń, E.A., Weiermann, A.: A uniform approach to fundamental sequences and hierarchies. Math. Logic Quart. 40, 273–286 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chambart, P., Schnoebelen, P.: Post embedding problem is not primitive recursive, with applications to channel systems. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 265–276. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of lossy channel systems. In: Proc. LICS 2008, pp. 205–216. IEEE, Los Alamitos (2008)

    Google Scholar 

  5. Chambart, P., Schnoebelen, P.: Pumping and counting on the Regular Post Embedding Problem. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 64–75. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Cichoń, E.A.: Ordinal complexity measures. In: Conference on Proofs and Computations in Honour of Stan Wainer on the Occasion of his 65th Birthday (2009)

    Google Scholar 

  7. Cichoń, E.A., Tahhan Bittar, E.: Ordinal recursive bounds for Higman’s Theorem. Theor. Comput. Sci. 201, 63–84 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Clote, P.: On the finite containment problem for Petri nets. Theor. Comput. Sci. 43, 99–105 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and primitive-recursive bounds with Dickson’s Lemma. In: Proc. LICS 2011. IEEE, Los Alamitos (to appear, 2011); arXiv:1007.2989 (cs.LO), http://arxiv.org/abs/1007.2989

    Google Scholar 

  10. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor. Comput. Sci. 256, 63–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Henzinger, T.A., Majumdar, R., Raskin, J.F.: A classification of symbolic transition systems. ACM Trans. Comput. Logic 6, 1–32 (2005)

    Article  MathSciNet  Google Scholar 

  12. de Jongh, D.H.J., Parikh, R.: Well-partial orderings and hierarchies. Indag. Math. 39, 195–207 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kruskal, J.B.: The theory of well-quasi-ordering: A frequently discovered concept. J. Comb. Theory A 13, 297–305 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  14. Löb, M., Wainer, S.: Hierarchies of number theoretic functions, I. Arch. Math. Logic 13, 39–51 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  15. McAloon, K.: Petri nets and large finite sets. Theor. Comput. Sci. 32, 173–183 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Moser, G., Weiermann, A.: Relating derivation lengths with the slow-growing hierarchy directly. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 296–310. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Schnoebelen, P.: Lossy counter machines decidability cheat sheet. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 51–75. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Touzet, H.: Propriétés combinatoires pour la terminaison de systèmes des réécriture. Thèse de doctorat, Université de Nancy 1, France (September 1997)

    Google Scholar 

  19. Touzet, H.: A characterisation of multiply recursive functions with Higman’s Lemma. Inform. and Comput. 178, 534–544 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Weiermann, A.: Complexity bounds for some finite forms of Kruskal’s Theorem. J. Symb. Comput. 18, 463–488 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmitz, S., Schnoebelen, P. (2011). Multiply-Recursive Upper Bounds with Higman’s Lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6756. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22012-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22012-8_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22011-1

  • Online ISBN: 978-3-642-22012-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics