Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Analysing Time Series of GNSS Residuals by Means of AR(I)MA Processes

  • Conference paper
  • First Online:
VII Hotine-Marussi Symposium on Mathematical Geodesy

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 137))

Abstract

The classical least-squares (LS) algorithm is widely applied in processing data from Global Navigation Satellite Systems (GNSS). However, some limiting factors impacting the accuracy measures of unknown parameters such as temporal correlations of observational data are neglected in most GNSS processing software products. In order to study the temporal correlation characteristics of GNSS observations, this paper introduces autoregressive (integrated) moving average (AR(I)MA) processes to analyse residual time series resulting from the LS evaluation. Based on a representative data base the influences of various factors, like baseline length, multipath effects, observation weighting, atmospheric conditions on ARIMA identification are investigated. Additionally, different temporal correlation models, for example first-order AR processes, ARMA processes, and empirically determined analytical autocorrelation functions are compared with respect to model appropriateness and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Brockwell PJ, Davis RA (2002) Introduction to time series and forecasting, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Bern

    Google Scholar 

  • Hannen EJ, Rissanen J (1982) Recursive estimation of mixed autoregressive moving-average order. Biometrika 69(1): 81–94

    Article  Google Scholar 

  • Hartung J, Elpelt B, Klösener KH (2005) Statistik: Lehr- und Handbuch der angewandten Statistik, 14th edn. Oldenbourg Wissenschaftsverlag, Munich

    Google Scholar 

  • Howind J (2005) Analyse des stochastischen Modells von GPS-Trägerphasenbeobachtungen. Deutsche Geodätische Kommission, Munich

    Google Scholar 

  • Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76(2): 297–307

    Article  Google Scholar 

  • Klees R, Ditmar P, Broersen P (2003) How to handle colored observation noise in large least-squares problems. J Geodesy 76(11–12):629–640

    Article  Google Scholar 

  • Li J, Miyashita K, Kato T, Miyazaki S (2000) GPS time series modeling by autoregressive moving average method: application to the crustal deformation in central Japan. Earth Planets Space 52(3):155–162

    Google Scholar 

  • Luo X, Mayer M, Heck B (2008) Improving the stochastic model of GNSS observations by means of SNR-based weighting. In: Sideris MG (ed) Observing our changing Earth. Proceedings of the 2007 IAG general assembly, 02–13 July 2007, Perugia, Italy, IAG Symposia, vol 133, pp 725–734

    Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246

    Google Scholar 

  • Ragheb AE, Clarke PJ, Edwards SJ (2007) GPS sidereal filtering: coordinate- and carrier-phase-level strategies. J Geodesy 81(5):325–335

    Article  Google Scholar 

  • Said SE, Dickey DA (1984) Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71(3):599–607

    Article  Google Scholar 

  • Schön S, Brunner FK (2008) A proposal for modelling physical correlations of GPS phase observations. J Geodesy 82(10):601–612

    Article  Google Scholar 

  • Teusch A (2006) Einführung in die Spektral- und Zeitreihenanalyse mit Beispielen aus der Geodäsie. Deutsche Geodätische Kommission, Munich

    Google Scholar 

  • Tiberius C, Jonkman N, Kenselaar F (1999) The stochastics of GPS observables. GPS World 10(2):49–54

    Google Scholar 

  • Tiberius C, Kenselaar, F (2003) Variance component estimation and precise GPS positioning: case study. J Surv Eng 129(1):11–18

    Article  Google Scholar 

  • Wang J, Satirapod C, Rizos C (2002) Stochastic assessment of GPS carrier phase measurements for precise static relative positioning. J Geodesy 76(2):95–104

    Article  Google Scholar 

  • Wheelon AD (2001) Electromagnetic scintillation: I. Geometrical optics. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

The Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) is gratefully acknowledged for supporting this research work. We also thank two anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, X., Mayer, M., Heck, B. (2012). Analysing Time Series of GNSS Residuals by Means of AR(I)MA Processes. In: Sneeuw, N., Novák, P., Crespi, M., Sansò, F. (eds) VII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22078-4_19

Download citation

Publish with us

Policies and ethics