Abstract
We extend Pratt’s worst-case optimal decision procedure for PDL to a richer logic with nominals, difference modalities, and inverse actions. We prove correctness and worst-case optimality. Our correctness proof is based on syntactic models called demos. The main theorem states that a formula is satisfiable if and only if it is contained in a demo. From this theorem the correctness of the decision procedure is easily obtained. Our development is modular and we extend it stepwise from modal logic with eventualities to the full logic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Areces, C., Blackburn, P., Marx, M.: The computational complexity of hybrid temporal logics. L. J. IGPL 8(5), 653–679 (2000)
Baader, F., Sattler, U.: Tableau algorithms for description logics. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 1–18. Springer, Heidelberg (2000)
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. CUP (2001)
Bolander, T., Blackburn, P.: Termination for hybrid tableaus. J. Log. Comput. 17(3), 517–554 (2007)
De Giacomo, G.: Decidability of class-based knowledge representation formalisms. Ph.D. thesis, Università degli Studi di Roma “La Sapienza” (1995)
De Giacomo, G., Massacci, F.: Combining deduction and model checking into tableaux and algorithms for converse-PDL. Inf. Comput. 162(1-2), 117–137 (2000)
Donini, F.M., Massacci, F.: EXPtime tableaux for \(\mathcal{ALC}\). AI 124(1), 87–138 (2000)
Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the temporal logic of branching time. J. Comput. System Sci. 30(1), 1–24 (1985)
Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs. In: Proc. STOC, pp. 286–294. ACM, New York (1977)
Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. System Sci., 194–211 (1979)
Gargov, G., Goranko, V.: Modal logic with names. J. Philos. L. 22, 607–636 (1993)
Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 437–452. Springer, Heidelberg (2009)
Goré, R.P., Nguyen, L.A.: EXPTIME tableaux with global caching for description logics with transitive roles, inverse roles and role hierarchies. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 133–148. Springer, Heidelberg (2007)
Goré, R., Widmann, F.: Optimal and cut-free tableaux for propositional dynamic logic with converse. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 225–239. Springer, Heidelberg (2010)
Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer, Heidelberg (2001)
Harel, D.: Dynamic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. II, pp. 497–604. Reidel, Dordrechtz (1984)
Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge (2000)
Hollunder, B., Nutt, W., Schmidt-Schauß, M.: Subsumption algorithms for concept description languages. In: Proc. ECAI, pp. 348–353 (1990)
Kaminski, M., Schneider, T., Smolka, G.: Correctness and worst-case optimality of Pratt-style decision procedures for modal and hybrid logics. Technical report, Saarland University (2011), http://tinyurl.com/hpdldc
Kaminski, M., Smolka, G.: Clausal graph tableaux for hybrid logic with eventualities and difference. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 417–431. Springer, Heidelberg (2010)
Kaminski, M., Smolka, G.: Terminating tableaux for hybrid logic with eventualities. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 240–254. Springer, Heidelberg (2010)
Kozen, D., Tiuryn, J.: Logics of programs. In: Handbook of Theoretical Computer Science. Formal Models and Sematics, vol. B, pp. 789–840. Elsevier, Amsterdam (1990)
Passy, S., Tinchev, T.: An essay in combinatory dynamic logic. Inf. Comput. 93(2), 263–332 (1991)
Pratt, V.R.: Models of program logics. In: Proc. FOCS, pp. 115–122 (1979)
Pratt, V.R.: A near-optimal method for reasoning about action. J. Comput. System Sci. 20(2), 231–254 (1980)
Prior, A.: Past, Present and Future. OUP, England (1967)
Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with compliments. AI 48(1), 1–26 (1991)
Segerberg, K.: A note on the logic of elsewhere. Theoria 46(2-3), 183–187 (1980)
Streett, R.S., Emerson, E.A.: An automata theoretic decision procedure for the propositional μ-calculus. Inform. and Control 81, 249–264 (1989)
Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing terminological reasoning for expressive description logics. J. Autom. Reas. 39(3), 277–316 (2007)
Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. J. Comput. System Sci. 32, 183–221 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kaminski, M., Schneider, T., Smolka, G. (2011). Correctness and Worst-Case Optimality of Pratt-Style Decision Procedures for Modal and Hybrid Logics. In: Brünnler, K., Metcalfe, G. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2011. Lecture Notes in Computer Science(), vol 6793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22119-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-22119-4_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22118-7
Online ISBN: 978-3-642-22119-4
eBook Packages: Computer ScienceComputer Science (R0)