Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Correctness and Worst-Case Optimality of Pratt-Style Decision Procedures for Modal and Hybrid Logics

  • Conference paper
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2011)

Abstract

We extend Pratt’s worst-case optimal decision procedure for PDL to a richer logic with nominals, difference modalities, and inverse actions. We prove correctness and worst-case optimality. Our correctness proof is based on syntactic models called demos. The main theorem states that a formula is satisfiable if and only if it is contained in a demo. From this theorem the correctness of the decision procedure is easily obtained. Our development is modular and we extend it stepwise from modal logic with eventualities to the full logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Areces, C., Blackburn, P., Marx, M.: The computational complexity of hybrid temporal logics. L. J. IGPL 8(5), 653–679 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baader, F., Sattler, U.: Tableau algorithms for description logics. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 1–18. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. CUP (2001)

    Google Scholar 

  4. Bolander, T., Blackburn, P.: Termination for hybrid tableaus. J. Log. Comput. 17(3), 517–554 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Giacomo, G.: Decidability of class-based knowledge representation formalisms. Ph.D. thesis, Università degli Studi di Roma “La Sapienza” (1995)

    Google Scholar 

  6. De Giacomo, G., Massacci, F.: Combining deduction and model checking into tableaux and algorithms for converse-PDL. Inf. Comput. 162(1-2), 117–137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Donini, F.M., Massacci, F.: EXPtime tableaux for \(\mathcal{ALC}\). AI 124(1), 87–138 (2000)

    MATH  Google Scholar 

  8. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the temporal logic of branching time. J. Comput. System Sci. 30(1), 1–24 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs. In: Proc. STOC, pp. 286–294. ACM, New York (1977)

    Google Scholar 

  10. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. System Sci., 194–211 (1979)

    Google Scholar 

  11. Gargov, G., Goranko, V.: Modal logic with names. J. Philos. L. 22, 607–636 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goré, R., Widmann, F.: An optimal on-the-fly tableau-based decision procedure for PDL-satisfiability. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 437–452. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Goré, R.P., Nguyen, L.A.: EXPTIME tableaux with global caching for description logics with transitive roles, inverse roles and role hierarchies. In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 133–148. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Goré, R., Widmann, F.: Optimal and cut-free tableaux for propositional dynamic logic with converse. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 225–239. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Harel, D.: Dynamic logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. II, pp. 497–604. Reidel, Dordrechtz (1984)

    Chapter  Google Scholar 

  17. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  18. Hollunder, B., Nutt, W., Schmidt-Schauß, M.: Subsumption algorithms for concept description languages. In: Proc. ECAI, pp. 348–353 (1990)

    Google Scholar 

  19. Kaminski, M., Schneider, T., Smolka, G.: Correctness and worst-case optimality of Pratt-style decision procedures for modal and hybrid logics. Technical report, Saarland University (2011), http://tinyurl.com/hpdldc

  20. Kaminski, M., Smolka, G.: Clausal graph tableaux for hybrid logic with eventualities and difference. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 417–431. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Kaminski, M., Smolka, G.: Terminating tableaux for hybrid logic with eventualities. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 240–254. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Kozen, D., Tiuryn, J.: Logics of programs. In: Handbook of Theoretical Computer Science. Formal Models and Sematics, vol. B, pp. 789–840. Elsevier, Amsterdam (1990)

    Google Scholar 

  23. Passy, S., Tinchev, T.: An essay in combinatory dynamic logic. Inf. Comput. 93(2), 263–332 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pratt, V.R.: Models of program logics. In: Proc. FOCS, pp. 115–122 (1979)

    Google Scholar 

  25. Pratt, V.R.: A near-optimal method for reasoning about action. J. Comput. System Sci. 20(2), 231–254 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Prior, A.: Past, Present and Future. OUP, England (1967)

    Book  MATH  Google Scholar 

  27. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with compliments. AI 48(1), 1–26 (1991)

    MATH  Google Scholar 

  28. Segerberg, K.: A note on the logic of elsewhere. Theoria 46(2-3), 183–187 (1980)

    Article  MathSciNet  Google Scholar 

  29. Streett, R.S., Emerson, E.A.: An automata theoretic decision procedure for the propositional μ-calculus. Inform. and Control 81, 249–264 (1989)

    MathSciNet  MATH  Google Scholar 

  30. Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing terminological reasoning for expressive description logics. J. Autom. Reas. 39(3), 277–316 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. J. Comput. System Sci. 32, 183–221 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaminski, M., Schneider, T., Smolka, G. (2011). Correctness and Worst-Case Optimality of Pratt-Style Decision Procedures for Modal and Hybrid Logics. In: Brünnler, K., Metcalfe, G. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2011. Lecture Notes in Computer Science(), vol 6793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22119-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22119-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22118-7

  • Online ISBN: 978-3-642-22119-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics