Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Weak Inclusion for XML Types

  • Conference paper
Implementation and Application of Automata (CIAA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6807))

Included in the following conference series:

Abstract

Considering that the unranked tree languages L(G) and L(G′) are those defined by given non-recursive XML types G and G′, this paper proposes a simple and intuitive method to verify whether L(G) is “approximatively” included in L(G′). Our approximative criterion consists in weakening the father-children relationships. Experimental results are discussed, showing the efficiency of our method in many situations.

Partially supported by: Codex ANR-08-DEFIS-04.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amavi, J., Chabin, J., Halfeld Ferrari, M., Réty, P.: Weak Inclusion for XML Types (full version). Tech. Rep. RR-2011-07, LIFO, Université d’Orléans (2011), http://www.univ-orleans.fr/lifo/prodsci/rapports/RR/RR2011/RR-2011-07.pdf

  2. Bille, P., Li Gørtz, I.: The tree inclusion problem: In optimal space and faster. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 66–77. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Bouajjani, A., Habermehl, P., Holík, L., Touili, T., Vojnar, T.: Antichain-based universality and inclusion testing over nondeterministic finite tree automata. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 57–67. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Brüggeman-Klein, A., Wood, D.: One-unambiguous regular languages. Information and Computation 142(2), 182–206 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theor. Comput. Sci (TCS) 233(1-2), 75–90 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Champavère, J., Gilleron, R., Lemay, A., Niehren, J.: Efficient Inclusion Checking for Deterministic Tree Automata and DTDs. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 184–195. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Chen, Y., Shi, Y., Chen, Y.: Tree inclusion algorithm, signatures and evaluation of path-oriented queries. In: Symposium on Applied Computing, pp. 1020–1025 (2006)

    Google Scholar 

  8. Colazzo, D., Ghelli, G., Pardini, L., Sartiani, C.: Linear Inclusion for XML Regular Expression Types. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM, pp. 137–146. ACM Digital Library (2009)

    Google Scholar 

  9. Colazzo, D., Ghelli, G., Sartiani, C.: Efficient Asymmetric Inclusion between Regular Expression Types. In: Proceeding of International Conference of Database Theory, ICDT, pp. 174–182. ACM Digital Library (2009)

    Google Scholar 

  10. Fujiyoshi, A.: Combination of context-free grammars and tree automata for unranked and ranked trees. In: Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 283–285. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Götz, M., Koch, C., Martens, W.: Efficient algorithms for descendant-only tree pattern queries. Inf. Syst. 34(7), 602–623 (2009)

    Article  Google Scholar 

  12. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory Languages and Computation, 2nd edn. Addison-Wesley Publishing Company, Reading (2001)

    MATH  Google Scholar 

  13. Kilpeläinen, P., Mannila, H.: Ordered and unordered tree inclusion. SIAM J. Comput. 24(2), 340–356 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mani, M., Lee, D.: XML to Relational Conversion Using Theory of Regular Tree Grammars. In: Bressan, S., Chaudhri, A.B., Li Lee, M., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002. LNCS, vol. 2590, pp. 81–103. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Martens, W., Neven, F., Schwentick, T.: Complexity of decision problems for simple regular expressions. In: Int. Symp. Mathematical Foundations of Computer Science, MFCS, pp. 889–900 (2004)

    Google Scholar 

  16. Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of XML schema languages using formal language theory. ACM Trans. Inter. Tech. 5(4), 660–704 (2005)

    Article  Google Scholar 

  17. Richter, T.: A new algorithm for the ordered tree inclusion problem. In: Hein, J., Apostolico, A. (eds.) CPM 1997. LNCS, vol. 1264, pp. 150–166. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  18. Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Comput. 19, 424–437 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ziadi, D., Ponty, J.L., Champarnaud, J.: Passage d’une expression rationnelle un automate fini non-deterministe. Bull. Belg. Math. Soc. 4, 177–203 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amavi, J., Chabin, J., Halfeld Ferrari, M., Réty, P. (2011). Weak Inclusion for XML Types. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, JM., Maurel, D. (eds) Implementation and Application of Automata. CIAA 2011. Lecture Notes in Computer Science, vol 6807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22256-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22256-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22255-9

  • Online ISBN: 978-3-642-22256-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics